untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-17T12:15:57Z</responseDate> <request identifier=oai:HAL:hal-01685644v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:hal-01685644v1</identifier> <datestamp>2018-01-17</datestamp> <setSpec>type:ART</setSpec> <setSpec>subject:sdu</setSpec> <setSpec>subject:sde</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:UNIV-GRENOBLE1</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:OSUG</setSpec> <setSpec>collection:SDE</setSpec> <setSpec>collection:GM</setSpec> <setSpec>collection:LGGE</setSpec> <setSpec>collection:UGA</setSpec> <setSpec>collection:AGROPOLIS</setSpec> <setSpec>collection:GIP-BE</setSpec> <setSpec>collection:B3ESTE</setSpec> <setSpec>collection:UNIV-MONTPELLIER</setSpec> <setSpec>collection:INSU</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=en>Microstructural evolution during thermal annealing of ice-I-h</title> <creator>Hidas, Karoly</creator> <creator>TOMMASI, Andrea</creator> <creator>MAINPRICE, David</creator> <creator>Chauve, T.</creator> <creator>BAROU, Fabrice</creator> <creator>Montagnat, M.</creator> <contributor>Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS)</contributor> <contributor>Laboratoire de glaciologie et géophysique de l'environnement (LGGE) ; Observatoire des Sciences de l'Univers de Grenoble (OSUG) ; Université Joseph Fourier - Grenoble 1 (UJF) - Institut national des sciences de l'Univers (INSU - CNRS) - Centre National de la Recherche Scientifique (CNRS) - Université Joseph Fourier - Grenoble 1 (UJF) - Institut national des sciences de l'Univers (INSU - CNRS) - Centre National de la Recherche Scientifique (CNRS) - Centre National de la Recherche Scientifique (CNRS)</contributor> <source>ISSN: 0191-8141</source> <source>Journal of Structural Geology</source> <publisher>Elsevier</publisher> <identifier>hal-01685644</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-01685644</identifier> <source>https://hal.archives-ouvertes.fr/hal-01685644</source> <source>Journal of Structural Geology, Elsevier, 2017, 99, pp.31-44. 〈10.1016/j.jsg.2017.05.001〉</source> <identifier>DOI : 10.1016/j.jsg.2017.05.001</identifier> <relation>info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jsg.2017.05.001</relation> <language>en</language> <subject lang=en>Annealing</subject> <subject lang=en>Hexagonal ice</subject> <subject lang=en>EBSD</subject> <subject lang=en>Static recrystallization</subject> <subject lang=en>Grain boundary migration</subject> <subject lang=en>Grain growth</subject> <subject>[SDU.STU.GP] Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph]</subject> <subject>[SDE.MCG] Environmental Sciences/Global Changes</subject> <type>info:eu-repo/semantics/article</type> <type>Journal articles</type> <description lang=en>We studied the evolution of the microstructure of ice-Ih during static recrystallization by stepwise annealing experiments. We alternated thermal annealing and electron backscatter diffraction (EBSD) analyses on polycrystalline columnar ice pre-deformed in uniaxial compression at temperature of −7 °C to macroscopic strains of 3.0–5.2. Annealing experiments were carried out at −5 °C and −2 °C up to a maximum of 3.25 days, typically in 5–6 steps. EBSD crystal orientation maps obtained after each annealing step permit the description of microstructural changes. Decrease in average intragranular misorientation at the sample scale and modification of the misorientation across subgrain boundaries provide evidence for recovery from the earliest stages of annealing. This initial evolution is similar for all studied samples irrespective of their initial strain or annealing temperature. After an incubation period ≥1.5 h, recovery is accompanied by recrystallization (nucleation and grain boundary migration). Grain growth proceeds at the expense of domains with high intragranular misorientations, consuming first the most misorientated parts of primary grains. Grain growth kinetics fits the parabolic growth law with grain growth exponents in the range of 2.4–4.0. Deformation-induced tilt boundaries and kink bands may slow down grain boundary migration. They are stable features during early stages of static recrystallization, only erased by normal growth, which starts after >24 h of annealing.</description> <date>2017-06</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>