untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-15T18:32:10Z</responseDate> <request identifier=oai:HAL:hal-01104204v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:hal-01104204v1</identifier> <datestamp>2018-01-11</datestamp> <setSpec>type:ART</setSpec> <setSpec>subject:spi</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:GM</setSpec> <setSpec>collection:LMGC</setSpec> <setSpec>collection:AGROPOLIS</setSpec> <setSpec>collection:INSU</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:GEOMECH</setSpec> <setSpec>collection:MIPS</setSpec> <setSpec>collection:B3ESTE</setSpec> <setSpec>collection:UNIV-MONTPELLIER</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=en>Numerical computations of rock dissolution and geomechanical effects for CO 2 geological storage</title> <creator>Wojtacki, Kajetan</creator> <creator>Lewandowska, Jolanta</creator> <creator>Gouze, Philippe</creator> <creator>Lipkowski, Artur</creator> <contributor>Laboratoire de Mécanique et Génie Civil (LMGC) ; Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS)</contributor> <contributor>Mathématiques et Modélisations en Mécanique (M3) ; Laboratoire de Mécanique et Génie Civil (LMGC) ; Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS)</contributor> <contributor>Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS)</contributor> <contributor>Gdańsk University of Technology</contributor> <description>International audience</description> <source>ISSN: 0363-9061</source> <source>EISSN: 1096-9853</source> <source>International Journal for Numerical and Analytical Methods in Geomechanics</source> <publisher>Wiley</publisher> <identifier>hal-01104204</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-01104204</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-01104204/document</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-01104204/file/Numerical_computations_rock_dissolution_Wojtacki_al_2014.pdf</identifier> <source>https://hal.archives-ouvertes.fr/hal-01104204</source> <source>International Journal for Numerical and Analytical Methods in Geomechanics, Wiley, 2014, pp.1-33. 〈10.1002/nag.2316〉</source> <identifier>DOI : 10.1002/nag.2316</identifier> <relation>info:eu-repo/semantics/altIdentifier/doi/10.1002/nag.2316</relation> <language>en</language> <subject lang=en>mi- crostructure</subject> <subject lang=en>chemo-mechanical coupling</subject> <subject lang=en>numerical computations</subject> <subject lang=en>X-ray tomography</subject> <subject lang=en>CO2 storage</subject> <subject lang=en>homogenization</subject> <subject>[SPI.MECA.MEFL] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph]</subject> <subject>[SPI.MECA.MEMA] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph]</subject> <subject>[SPI.MECA.SOLID] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of the solides [physics.class-ph]</subject> <type>info:eu-repo/semantics/article</type> <type>Journal articles</type> <description lang=en>The paper is motivated by the long term safety analysis of the CO 2 geological storage. We present a methodology for the assessment of the ge-omechanical impact of progressive rock dissolution. The method is based on the use of X-ray tomography and the numerical dissolution technique. The influence of evolution of the microstructure on the macroscopic properties of the rock is analysed by using periodic homogenization method. The numerical computations show progressive degradation of all components of the stiffness (orthotropic) tensor. Moreover, the evolution of associated mass transfer properties (as tortuosity and conductivity tensors), by using the periodic homogenization method, is also calculated. The correlation between the mechanical parameters and the transfer properties during the dissolution pro-cess is presented. The results show that the highest increase of the hydraulic conductivity (in direction Y) is not associated with the highest decrease of Young modulus in this direction. Moreover, the highest decrease of Young modulus (in the direction X) is not associated with percolation in this direction. Finally, an incremental law to calculate settlement, in case of a rock with evolving microstructure, is proposed. The solution of the macroscopic settlement problem under constant stress and drained conditions showed that the geomechanical effects of the rock dissolution are rather limited.</description> <date>2014-06-26</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>