untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-17T12:07:42Z</responseDate> <request identifier=oai:HAL:hal-01544793v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:hal-01544793v1</identifier> <datestamp>2018-01-11</datestamp> <setSpec>type:ART</setSpec> <setSpec>subject:sdv</setSpec> <setSpec>collection:EVOL_PARIS_SEINE-AIRE</setSpec> <setSpec>collection:EVOLUTION_PARIS_SEINE</setSpec> <setSpec>collection:UPMC</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:UNICE</setSpec> <setSpec>collection:SAE</setSpec> <setSpec>collection:GIP-BE</setSpec> <setSpec>collection:UPMC_POLE_4</setSpec> <setSpec>collection:UCA-TEST</setSpec> <setSpec>collection:IBPS</setSpec> <setSpec>collection:UNIV-COTEDAZUR</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=en>Protein networks identify novel symbiogenetic genes resulting from plastid endosymbiosis</title> <creator>Meheust, Raphael</creator> <creator>Zelzion, Ehud</creator> <creator>Bhattacharya, Debashish</creator> <creator>Lopez, Philippe</creator> <creator>Bapteste, Eric</creator> <contributor>Adaptation, Intégration, Réticulation et Evolution (AIRE) ; Systématique, adaptation, évolution (SAE) ; Université Pierre et Marie Curie - Paris 6 (UPMC) - Centre National de la Recherche Scientifique (CNRS) - Université Pierre et Marie Curie - Paris 6 (UPMC) - Centre National de la Recherche Scientifique (CNRS) - Evolution Paris Seine ; Université Nice Sophia Antipolis (UNS) ; Université Côte d'Azur (UCA) - Université Côte d'Azur (UCA) - Centre National de la Recherche Scientifique (CNRS) - Université des Antilles et de la Guyane (UAG) - Université Pierre et Marie Curie - Paris 6 (UPMC) - Université Nice Sophia Antipolis (UNS) ; Université Côte d'Azur (UCA) - Université Côte d'Azur (UCA) - Université des Antilles et de la Guyane (UAG)</contributor> <contributor>European Research Council [615274]</contributor> <description>International audience</description> <source>ISSN: 0027-8424</source> <source>EISSN: 1091-6490</source> <source>Proceedings of the National Academy of Sciences of the United States of America </source> <publisher>National Academy of Sciences</publisher> <identifier>hal-01544793</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-01544793</identifier> <source>https://hal.archives-ouvertes.fr/hal-01544793</source> <source>Proceedings of the National Academy of Sciences of the United States of America , National Academy of Sciences, 2016, 113 (13), pp.3579-3584. 〈10.1073/pnas.1517551113〉</source> <identifier>DOI : 10.1073/pnas.1517551113</identifier> <relation>info:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.1517551113</relation> <language>en</language> <subject lang=en>gene fusion</subject> <subject lang=en> endosymbiosis</subject> <subject lang=en> photosynthesis</subject> <subject lang=en> eukaryote evolution</subject> <subject lang=en> novel gene origin</subject> <subject>[SDV.BID] Life Sciences [q-bio]/Biodiversity</subject> <type>info:eu-repo/semantics/article</type> <type>Journal articles</type> <description lang=en>The integration of foreign genetic information is central to the evolution of eukaryotes, as has been demonstrated for the origin of the Calvin cycle and of the heme and carotenoid biosynthesis pathways in algae and plants. For photosynthetic lineages, this coordination involved three genomes of divergent phylogenetic origins (the nucleus, plastid, and mitochondrion). Major hurdles overcome by the ancestor of these lineages were harnessing the oxygen-evolving organelle, optimizing the use of light, and stabilizing the partnership between the plastid endosymbiont and host through retargeting of proteins to the nascent organelle. Here we used protein similarity networks that can disentangle reticulate gene histories to explore how these significant challenges were met. We discovered a previously hidden component of algal and plant nuclear genomes that originated from the plastid endosymbiont: symbiogenetic genes (S genes). These composite proteins, exclusive to photosynthetic eukaryotes, encode a cyanobacterium-derived domain fused to one of cyanobacterial or another prokaryotic origin and have emerged multiple, independent times during evolution. Transcriptome data demonstrate the existence and expression of S genes across a wide swath of algae and plants, and functional data indicate their involvement in tolerance to oxidative stress, phototropism, and adaptation to nitrogen limitation. Our research demonstrates the ``recycling'' of genetic information by photosynthetic eukaryotes to generate novel composite genes, many of which function in plastid maintenance.</description> <date>2016-03</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>