untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-15T18:35:39Z</responseDate> <request identifier=oai:HAL:hal-00814075v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:hal-00814075v1</identifier> <datestamp>2018-01-11</datestamp> <setSpec>type:ART</setSpec> <setSpec>subject:sdu</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:GM</setSpec> <setSpec>collection:GIP-BE</setSpec> <setSpec>collection:AGROPOLIS</setSpec> <setSpec>collection:INSU</setSpec> <setSpec>collection:B3ESTE</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:UNIV-MONTPELLIER</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=en>Pervasive reactive melt migration through fast-spreading lower oceanic crust (Hess Deep, equatorial Pacific Ocean)</title> <creator>Lissenberg, C. Johan</creator> <creator>Macleod, Christopher J.</creator> <creator>Howard, Kerry A.</creator> <creator>Godard, Marguerite</creator> <contributor>School of Earth and Ocean Sciences, Cardiff University ; Université du Québec</contributor> <contributor>Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS)</contributor> <description>International audience</description> <source>ISSN: 0012-821X</source> <source>Earth and Planetary Science Letters</source> <publisher>Elsevier</publisher> <identifier>hal-00814075</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-00814075</identifier> <source>https://hal.archives-ouvertes.fr/hal-00814075</source> <source>Earth and Planetary Science Letters, Elsevier, 2013, 361, pp.436-447. 〈10.1016/j.epsl.2012.11.012〉</source> <identifier>DOI : 10.1016/j.epsl.2012.11.012</identifier> <relation>info:eu-repo/semantics/altIdentifier/doi/10.1016/j.epsl.2012.11.012</relation> <language>en</language> <subject lang=en>mid-ocean ridge basalt</subject> <subject lang=en>lower oceanic crust</subject> <subject lang=en>reactive porous flow</subject> <subject lang=en>Hess Deep</subject> <subject>[SDU.STU.PE] Sciences of the Universe [physics]/Earth Sciences/Petrography</subject> <type>info:eu-repo/semantics/article</type> <type>Journal articles</type> <description lang=en>Mid-ocean ridge basalt (MORB) is the most abundant magma on Earth, and provides a geochemical window into the mantle. Deriving mantle composition and melting processes from the erupted lavas requires correction to be made for their evolution as they pass through and generate the oceanic crust. This is typically done by assuming that modification of melts in crustal magma chambers occurs exclusively by fractional crystallisation. However, extensive mineral major- and trace element data from a full section of fast-spread lower crustal rocks exposed in Hess Deep (equatorial Pacific Ocean) demonstrate that their evolution is instead controlled by reactive porous flow. These reactions lead to a strong enrichment in, and fractionation of, incompatible trace elements in the melt (as recorded by clinopyroxene compositions), leading to melt compositions far outside of the compositional realm of MORB both in terms of trace element abundances and ratios. The reactive signature increases in strength up section, peaking in varitextured gabbros interpreted to represent the fossilised axial melt lens, indicating that reactive porous flow occurred on the scale of the entire lower crust. The enrichment of the melt is coupled with a strong trace element depletion of plagioclase, olivine, and, to a lesser extent, clinopyroxene cores, suggesting that these phases represent the residues of the reactions from which trace elements have been removed. The dominant role of reactive porous flow, and the resulting deviations from fractional crystallisation predictions, suggest that the lower oceanic crust plays a much more complex and significant role in modifying the compositions of MORB than previously expected, with consequent implications for models of mantle processes.</description> <date>2013-01-01</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>