untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-15T18:41:13Z</responseDate> <request identifier=oai:HAL:hal-00669897v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:hal-00669897v1</identifier> <datestamp>2018-01-11</datestamp> <setSpec>type:ART</setSpec> <setSpec>subject:sdu</setSpec> <setSpec>subject:phys</setSpec> <setSpec>subject:sde</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:SDE</setSpec> <setSpec>collection:I3M_UMR5149</setSpec> <setSpec>collection:GM</setSpec> <setSpec>collection:IMMM</setSpec> <setSpec>collection:GIP-BE</setSpec> <setSpec>collection:IMAG-MONTPELLIER</setSpec> <setSpec>collection:AGROPOLIS</setSpec> <setSpec>collection:INSU</setSpec> <setSpec>collection:B3ESTE</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:UNIV-MONTPELLIER</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=en>Plate rigidity inversion in southern California using interseismic GPS velocity field</title> <creator>Chery, Jean</creator> <creator>Mohammadi, B.</creator> <creator>Peyret, Michel</creator> <creator>JOULAIN, Claire</creator> <contributor>Risques ; Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS) - Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS)</contributor> <contributor>Institut de Mathématiques et de Modélisation de Montpellier (I3M) ; Université Montpellier 2 - Sciences et Techniques (UM2) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS)</contributor> <source>ISSN: 0956-540X</source> <source>EISSN: 1365-246X</source> <source>Geophysical Journal International</source> <publisher>Oxford University Press (OUP)</publisher> <identifier>hal-00669897</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-00669897</identifier> <source>https://hal.archives-ouvertes.fr/hal-00669897</source> <source>Geophysical Journal International, Oxford University Press (OUP), 2011, 187 (2), pp.783-796. 〈10.1111/j.1365-246X.2011.05192.x〉</source> <identifier>DOI : 10.1111/j.1365-246X.2011.05192.x</identifier> <relation>info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-246X.2011.05192.x</relation> <language>en</language> <subject lang=en>Inverse theory</subject> <subject lang=en>Seismic cycle</subject> <subject lang=en>Dynamics of lithosphere</subject> <subject lang=en>mantle</subject> <subject lang=en>crust</subject> <subject>[SDU.STU.GP] Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph]</subject> <subject>[PHYS.PHYS.PHYS-GEO-PH] Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph]</subject> <subject>[SDE.MCG] Environmental Sciences/Global Changes</subject> <type>info:eu-repo/semantics/article</type> <type>Journal articles</type> <description lang=en>This paper presents an inversion method using the interseismic velocity field to determine effective rigidity of the lithosphere. The method is based on the minimization of a cost function defined as the quadratic measure of the difference between measured and modelled velocity fields on a discrete set of points. The continuous mapping of the rigidity is fulfilled with a limited set of parameters and the forward solution is achieved using a plane stress finite element code. The computation of the cost function gradient in the parameters' space allows one to iteratively find the best parameters set through a suitable optimization algorithm.;We first design a benchmark including an abrupt rigidity variation that cannot be described by a continuous function. For such a case, we show that increasing the number of parameters is a way to accurately describe sharp variations of the rigidity map. Then, we use a dense GPS velocity field over the southwestern United States to estimate the corresponding rigidity variations for different spatial resolutions of the parameters' grid. We analyse the conceptual and practical difficulties associated with our methodology. Finally, rigidity maps obtained by our inversion method in southwestern United States and particularly across the San Andreas Fault System are reviewed and compared to current plate rigidity estimates and geophysical data over this area.</description> <date>2011</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>