untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-15T15:41:12Z</responseDate> <request identifier=oai:HAL:hal-00411926v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:hal-00411926v1</identifier> <datestamp>2018-01-11</datestamp> <setSpec>type:ART</setSpec> <setSpec>subject:sdu</setSpec> <setSpec>subject:info</setSpec> <setSpec>subject:phys</setSpec> <setSpec>subject:sde</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:SDE</setSpec> <setSpec>collection:GM</setSpec> <setSpec>collection:GIP-BE</setSpec> <setSpec>collection:AGROPOLIS</setSpec> <setSpec>collection:TDS-MACS</setSpec> <setSpec>collection:INSU</setSpec> <setSpec>collection:B3ESTE</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:UNIV-MONTPELLIER</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=en>Slip rates of the Altyn Tagh, Kunlun and Karakorum faults (Tibet) from 3D mechanical modeling</title> <creator>He, J.</creator> <creator>Chery, Jean</creator> <contributor>Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing ; Université du Québec</contributor> <contributor>Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS)</contributor> <description>International audience</description> <source>ISSN: 0012-821X</source> <source>Earth and Planetary Science Letters</source> <publisher>Elsevier</publisher> <identifier>hal-00411926</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-00411926</identifier> <source>https://hal.archives-ouvertes.fr/hal-00411926</source> <source>Earth and Planetary Science Letters, Elsevier, 2008, 274 (1-2), pp.50-58. 〈10.1016/j.epsl.2008.06.049〉</source> <identifier>DOI : 10.1016/j.epsl.2008.06.049</identifier> <relation>info:eu-repo/semantics/altIdentifier/doi/10.1016/j.epsl.2008.06.049</relation> <language>en</language> <subject lang=en>slip rate</subject> <subject lang=en>Altyn Tagh fault</subject> <subject lang=en>Kunlun fault</subject> <subject lang=en>mechanical modeling</subject> <subject lang=en>late Quaternary</subject> <subject lang=en>GPS geodesy</subject> <subject lang=en>Tibetan plateau</subject> <subject lang=en>San-andreas fault</subject> <subject lang=en>urasia collision zone</subject> <subject lang=en>crustal deformation</subject> <subject lang=en>velocity-field</subject> <subject lang=en>earthquake</subject> <subject>[SDU.STU.TE] Sciences of the Universe [physics]/Earth Sciences/Tectonics</subject> <subject>[INFO.INFO-MO] Computer Science [cs]/Modeling and Simulation</subject> <subject>[SDU.STU.GP] Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph]</subject> <subject>[PHYS.PHYS.PHYS-GEO-PH] Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph]</subject> <subject>[SDE.MCG] Environmental Sciences/Global Changes</subject> <type>info:eu-repo/semantics/article</type> <type>Journal articles</type> <description lang=en>We use 3-D mechanical modeling representing faults as planar surfaces with frictional properties that obey Coulomb-failure process to explore the long-term slip rates of the Altyn Tagh fault and Kunlun faults in the north Tibetan plateau. Crustal theology is simplified as an elastoplastic upper crust and a viscoelastic lower crust. Far-field GPS velocities and late Quaternary fault slip rates are used to constrain the model results. Rheological tests show that effective fault friction lower than 0.1-0.08 leads to high slip rates that fit with geologically and geodetically determined slip rates of the Kunlun fault (10-11.7 +/- 1.5 mm/yr). Meanwhile, the modeled Altyn Tagh fault reaches slip rates similar to 13.7 mm/yr to similar to 7.8 mm/yr in its central portion, between ranges of the geological slip rates. Associated with high slip rates, our model predicts that central Tibet (similar to 84 degrees E-95 degrees E) from the Altyn Tagh fault to the north of the Himalayan arc accommodates north-south shortening and east-west extension rates of similar to 10-12 mm/yr and similar to 8-10 mm/yr, respectively. We also question the widely accepted idea that interseismic strain is driven at the base of the seismogenic zone by a screw dislocation. If this assumption fails, the presented model implies that interseismic strain around large strike-slip faults could be distributed in a much broader way if the lithosphere deforms as a thin elastic plate rather than an elastic half-space with an embedded dislocation. If this distributed deformation is ignored, and the instantaneous surface deformation field modeled as that resulting from slip on a dislocation below a specified depth embedded in an elastic half-space, the estimated slip rate will inevitably be lower than the true long-term slip rate. This appears to explain why geodetic slip rates proposed for the Altyn Tagh fault (510 mm/yr) are lower than some of the geological slip rates. (C) 2008 Elsevier B.V. All rights reserved.</description> <date>2008</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>