untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-15T15:39:21Z</responseDate> <request identifier=oai:HAL:hal-00488441v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:hal-00488441v1</identifier> <datestamp>2018-01-12</datestamp> <setSpec>type:ART</setSpec> <setSpec>subject:info</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:INRIA</setSpec> <setSpec>collection:INRIA-SOPHIA</setSpec> <setSpec>collection:LIX</setSpec> <setSpec>collection:INRIA-SACLAY</setSpec> <setSpec>collection:X</setSpec> <setSpec>collection:PARISTECH</setSpec> <setSpec>collection:X-LIX</setSpec> <setSpec>collection:INRIASO</setSpec> <setSpec>collection:X-DEP-INFO</setSpec> <setSpec>collection:X-DEP</setSpec> <setSpec>collection:BNRMI</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:INRIA2</setSpec> <setSpec>collection:CEREGMIA</setSpec> <setSpec>collection:INRIA_TEST</setSpec> <setSpec>collection:UCA-TEST</setSpec> <setSpec>collection:UNIV-COTEDAZUR</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=it>Bregman Voronoi diagrams</title> <creator>Boissonnat, Jean-Daniel</creator> <creator>Nielsen, Frank</creator> <creator>Nock, Richard</creator> <contributor>Geometric computing (GEOMETRICA) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria) - Institut National de Recherche en Informatique et en Automatique (Inria) - Inria Saclay - Ile de France ; Institut National de Recherche en Informatique et en Automatique (Inria)</contributor> <contributor>Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX) ; Centre National de la Recherche Scientifique (CNRS) - Polytechnique - X</contributor> <contributor>Centre de Recherche en Economie, Gestion, Modélisation et Informatique Appliquée (CEREGMIA) ; Université des Antilles et de la Guyane (UAG)</contributor> <contributor>DIGITEO (project GAS 2008-16D)</contributor> <description>A preliminary version appeared in the 18th ACM-SIAM Symposium on Discrete Algorithms, pp. 746- 755, 2007</description> <description>International audience</description> <source>ISSN: 0179-5376</source> <source>EISSN: 1432-0444</source> <source>Discrete and Computational Geometry</source> <publisher>Springer Verlag</publisher> <identifier>hal-00488441</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-00488441</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-00488441/document</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-00488441/file/BVD-DCG.pdf</identifier> <source>https://hal.archives-ouvertes.fr/hal-00488441</source> <source>Discrete and Computational Geometry, Springer Verlag, 2010, pp.200</source> <language>en</language> <subject lang=it>Computational Information Geometry</subject> <subject lang=it>Voronoi diagram</subject> <subject lang=it>Delaunay triangula- tion</subject> <subject lang=it>Bregman divergence</subject> <subject lang=it>Bregman ball</subject> <subject lang=it>Legendre transformation</subject> <subject>Algorithms</subject> <subject>[INFO.INFO-CG] Computer Science [cs]/Computational Geometry [cs.CG]</subject> <type>info:eu-repo/semantics/article</type> <type>Journal articles</type> <description lang=en>The Voronoi diagram of a finite set of objects is a fundamental geometric structure that subdivides the embedding space into regions, each region consisting of the points that are closer to a given object than to the others. We may define various variants of Voronoi diagrams depending on the class of objects, the distance function and the embedding space. In this paper, we investigate a framework for defining and building Voronoi diagrams for a broad class of distance functions called Bregman divergences. Bregman divergences include not only the traditional (squared) Euclidean distance but also various divergence measures based on entropic functions. Accordingly, Bregman Voronoi diagrams allow one to define information-theoretic Voronoi diagrams in sta- tistical parametric spaces based on the relative entropy of distributions. We define several types of Bregman diagrams, establish correspondences between those diagrams (using the Legendre transformation), and show how to compute them efficiently. We also introduce extensions of these diagrams, e.g. k-order and k-bag Bregman Voronoi diagrams, and introduce Bregman triangulations of a set of points and their connection with Bregman Voronoi diagrams. We show that these triangulations capture many of the properties of the celebrated Delaunay triangulation.</description> <date>2010</date> <contributor>ANR : project GAIA 07-BLAN-0328-04, project GAIA 07-BLAN-0328-04</contributor> </dc> </metadata> </record> </GetRecord> </OAI-PMH>