untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-17T12:03:45Z</responseDate> <request identifier=oai:HAL:hal-01622151v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:hal-01622151v1</identifier> <datestamp>2018-01-11</datestamp> <setSpec>type:ART</setSpec> <setSpec>subject:sdu</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:GM</setSpec> <setSpec>collection:AGROPOLIS</setSpec> <setSpec>collection:INSU</setSpec> <setSpec>collection:B3ESTE</setSpec> <setSpec>collection:UNIV-MONTPELLIER</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=en>2.5-D discrete-dual-porosity model for simulating geoelectrical experiments in fractured rock</title> <creator>Sanz, Victor caballero</creator> <creator>ROUBINET, Delphine</creator> <creator>Demirel, Serdar</creator> <creator>Irving, James</creator> <contributor>University of Lausanne</contributor> <contributor>Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS)</contributor> <description>International audience</description> <source>ISSN: 0956-540X</source> <source>EISSN: 1365-246X</source> <source>Geophysical Journal International</source> <publisher>Oxford University Press (OUP)</publisher> <identifier>hal-01622151</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-01622151</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-01622151/document</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-01622151/file/sanzGJI2017.pdf</identifier> <source>https://hal.archives-ouvertes.fr/hal-01622151</source> <source>Geophysical Journal International, Oxford University Press (OUP), 2017, 209 (2), pp.1099-1110. 〈10.1093/gji/ggx080〉</source> <identifier>DOI : 10.1093/gji/ggx080</identifier> <relation>info:eu-repo/semantics/altIdentifier/doi/10.1093/gji/ggx080</relation> <language>en</language> <subject lang=en>Electrical properties</subject> <subject lang=en>Fracture and flow</subject> <subject lang=en>Electrical resistivity tomography (ERT)</subject> <subject lang=en>Fourier analysis</subject> <subject lang=en>Numerical modelling</subject> <subject lang=en>Numerical solutions</subject> <subject>[SDU.STU.GP] Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph]</subject> <type>info:eu-repo/semantics/article</type> <type>Journal articles</type> <description lang=en>Previous work has demonstrated that geoelectrical measurements, acquired either along the Earth’s surface or in boreholes, can be sensitive to the presence of fractures. However, a lack of numerical approaches that are well suited to modelling electric current flow in fractured media prevents us from systematically exploring the links between geoelectrical measurements and fractured rock properties. To address this issue, we present a highly computationally efficient methodology for the numerical simulation of geoelectrical data in 2.5-D in complex fractured domains. Our approach is based upon a discrete-dual-porosity formulation, whereby the fractures and rock matrix are treated separately and coupled through the exchange of electric current between them. We first validate our methodology against standard analytical and finite-element solutions. Subsequent use of the approach to simulate geoelectrical data for a variety of different fracture configurations demonstrates the sensitivity of these data to important parameters such as the fracture density, depth, and orientation.</description> <date>2017-05</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>