untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-15T18:40:33Z</responseDate> <request identifier=oai:HAL:hal-00688840v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:hal-00688840v1</identifier> <datestamp>2018-01-11</datestamp> <setSpec>type:COUV</setSpec> <setSpec>subject:sdu</setSpec> <setSpec>subject:phys</setSpec> <setSpec>subject:sde</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:SDE</setSpec> <setSpec>collection:GM</setSpec> <setSpec>collection:GIP-BE</setSpec> <setSpec>collection:AGROPOLIS</setSpec> <setSpec>collection:INSU</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:B3ESTE</setSpec> <setSpec>collection:UNIV-MONTPELLIER</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=en>Crystal fabric development and slip systems in a quartz mylonite: an approach via transmission electron microscopy and viscoplastic self-consistent modelling</title> <creator>Morales, L.F.G.</creator> <creator>MAINPRICE, David</creator> <creator>Lloyd, Geoffrey E.</creator> <creator>Law, R.D.</creator> <contributor>Manteau et Interfaces ; Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS) - Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS)</contributor> <contributor>Institute of Geophysics and Tectonics, The University of Leeds ; Université du Québec</contributor> <contributor>Department of Geosciences, Virginia Tech., , Blacksburg ; Université du Québec</contributor> <source>Deformation Mechanisms, Rheology and Tectonics: Microstructures, Mechanics and Anisotropy</source> <contributor>Prior D.J.; Rutter E.H.; Tatham D.J.</contributor> <publisher>Geological Society of London</publisher> <identifier>hal-00688840</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-00688840</identifier> <source>https://hal.archives-ouvertes.fr/hal-00688840</source> <source>Prior D.J.; Rutter E.H.; Tatham D.J. Deformation Mechanisms, Rheology and Tectonics: Microstructures, Mechanics and Anisotropy, Geological Society of London, pp.153-173, 2011, Geological Society Special Publication, 360</source> <language>en</language> <subject lang=it>transmission electron microscopy</subject> <subject>[SDU.STU.GP] Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph]</subject> <subject>[PHYS.PHYS.PHYS-GEO-PH] Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph]</subject> <subject>[SDE.MCG] Environmental Sciences/Global Changes</subject> <type>info:eu-repo/semantics/bookPart</type> <type>Book sections</type> <description lang=en>We have applied transmission electron microscopy (TEM) analyses coupled with viscoplastic self-consistent (VPSC) numerical modelling to identify the active slip systems and to better understand the crystal preferred orientation (CPO) development of the Torridon quartz mylonite (NW Scotland). TEM analyses showed evidence of activation of 1/3〈a〉{π′}, 1/3〈a〉{z} and possible 〈a〉(c) slip systems, as well as dislocation climb and dynamic recrystallization. All the CPOs generated by VPSC models share common characteristics with the Torridon quartz mylonite, but only Models 2 and 3 reproduce the [c]-axes maxima at low angle (<20°) to the foliation pole along the YZ plane, as observed in the mylonite. In Model 2, this concentration only occurs at γ≥2.6, whereas in Model 3 this maxima occurs at lower shear strains. The models that start with a previous preferred orientation acquire very strong CPOs after small-imposed strains, followed by the rapid rotation of the fabric in relation to the new imposed finite strain axes. The combined activation of 〈a〉{π′}, 〈a〉{z} and possibly 〈a〉(c) slip systems, as demonstrated by TEM analyses, suggests that the VPSC model that best predicts CPO development in the Torridon quartz mylonite is Model 2, where the critical resolved shear stress (CRSS) of 〈a〉{π/π′} is assumed to be slightly stronger than 〈a〉(c).</description> <date>2011-01-01</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>