untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-15T18:25:20Z</responseDate> <request identifier=oai:HAL:hal-01261600v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:hal-01261600v1</identifier> <datestamp>2018-01-11</datestamp> <setSpec>type:ART</setSpec> <setSpec>subject:sdu</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:GM</setSpec> <setSpec>collection:INSU</setSpec> <setSpec>collection:AGROPOLIS</setSpec> <setSpec>collection:B3ESTE</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:UNIV-MONTPELLIER</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=en>Coulomb theory applied to accretionary and nonaccretionary wedges: Possible causes for tectonic erosion and/or frontal accretion</title> <creator>E. Lallemand, Serge</creator> <creator>Schnürle, Philippe</creator> <creator>Malavieille, Jacques</creator> <contributor>Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS)</contributor> <description>International audience</description> <source>ISSN: 0148-0227</source> <source>EISSN: 2156-2202</source> <source>Journal of Geophysical Research</source> <publisher>American Geophysical Union</publisher> <identifier>hal-01261600</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-01261600</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-01261600/document</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-01261600/file/lallemandJGR1994.pdf</identifier> <source>https://hal.archives-ouvertes.fr/hal-01261600</source> <source>Journal of Geophysical Research, American Geophysical Union, 1994, 99 (B6), pp.12033-12055</source> <language>en</language> <subject>[SDU.STU.TE] Sciences of the Universe [physics]/Earth Sciences/Tectonics</subject> <type>info:eu-repo/semantics/article</type> <type>Journal articles</type> <description lang=en>Based on observations from both modem convergent margins and sandbox modeling, we examine the possible conditions favoring frontal accretion and/or frontal and basal tectonic erosion. Mean characteristic parameters (!.t, !.t* • and [) are used to discuss the mechanical stability of 28 transects across the frontal part of convergent margins where the Coulomb theory is applicable. Natural observations reveal that "typical accretionary wedges" are characterized by low tapers with smooth surface slope and subducting plate, low convergence rates and thick trench sediment, while "nonaccretionary wedges" display large tapers with irregular surface slopes and rough subducting plate, high convergence rates and almost no trench fill. Sandbox experiments were performed to illustrate the effects of seamounts/ridges in the subduction zone on the deformation of an accretionary wedge. These experiments show that a wedge of sand is first trapped and pushed in front of the seamount which acts as a moving bulldozer. This is followed by a tunnelling effect of the subducting seamount through the frontal wedge material, which results in considerable sand reworking. At an advanced subduction stage, the d6collement jumps back from a high level in the wedge to its former basal position. We conclude that a high trench sedimentation rate relative to the convergence rate leads to frontal accretion. In contrast, several conditions may favor tectonic erosion of the upper plate. First, oceanic features, such as grabens, seamounts or ridges, may trap upper plate material during their subduction process. Second, destabilization of the upper plate material by internal fluid overpressuring causing hydrofracturing is probably another important mechanism.</description> <date>1994</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>