untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-17T12:06:52Z</responseDate> <request identifier=oai:HAL:hal-01553120v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:hal-01553120v1</identifier> <datestamp>2018-01-11</datestamp> <setSpec>type:ART</setSpec> <setSpec>subject:sdu</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:GM</setSpec> <setSpec>collection:AGROPOLIS</setSpec> <setSpec>collection:INSU</setSpec> <setSpec>collection:B3ESTE</setSpec> <setSpec>collection:UNIV-MONTPELLIER</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=en>Analogue earthquakes and seismic cycles: experimental modelling across timescales</title> <creator>Rosenau, Matthias</creator> <creator>CORBI, Fabio</creator> <creator>DOMINGUEZ, Stephane</creator> <contributor>GeoForschungsZentrum - Helmholtz-Zentrum Potsdam (GFZ)</contributor> <contributor>Università degli Studi Roma Tre</contributor> <contributor>Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS)</contributor> <contributor>Risques ; Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS) - Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS)</contributor> <description>International audience</description> <source>ISSN: 1869-9510</source> <source>EISSN: 1869-9529</source> <source>Solid Earth</source> <publisher>European Geosciences Union</publisher> <identifier>hal-01553120</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-01553120</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-01553120/document</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-01553120/file/rosenau2017.pdf</identifier> <source>https://hal.archives-ouvertes.fr/hal-01553120</source> <source>Solid Earth, European Geosciences Union, 2017, 8 (3), pp.597-635. 〈10.5194/se-8-597-2017〉</source> <identifier>DOI : 10.5194/se-8-597-2017</identifier> <relation>info:eu-repo/semantics/altIdentifier/doi/10.5194/se-8-597-2017</relation> <language>en</language> <subject>[SDU.STU.TE] Sciences of the Universe [physics]/Earth Sciences/Tectonics</subject> <subject>[SDU.STU.GP] Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph]</subject> <type>info:eu-repo/semantics/article</type> <type>Journal articles</type> <description lang=en>Earth deformation is a multi-scale process ranging from seconds (seismic deformation) to millions of years (tectonic deformation). Bridging short- and long-term deformation and developing seismotectonic models has been a challenge in experimental tectonics for more than a century. Since the formulation of Reid's elastic rebound theory 100 years ago, laboratory mechanical models combining frictional and elastic elements have been used to study the dynamics of earthquakes. In the last decade, with the advent of high-resolution monitoring techniques and new rock analogue materials, laboratory earthquake experiments have evolved from simple spring-slider models to scaled analogue models. This evolution was accomplished by advances in seismology and geodesy along with relatively frequent occurrences of large earthquakes in the past decade. This coincidence has significantly increased the quality and quantity of relevant observations in nature and triggered a new understanding of earthquake dynamics. We review here the developments in analogue earthquake modelling with a focus on those seismotectonic scale models that are directly comparable to observational data on short to long timescales. We lay out the basics of analogue modelling, namely scaling, materials and monitoring, as applied in seismotectonic modelling. An overview of applications highlights the contributions of analogue earthquake models in bridging timescales of observations including earthquake statistics, rupture dynamics, ground motion, and seismic-cycle deformation up to seismotectonic evolution.</description> <date>2017</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>