untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-15T18:33:55Z</responseDate> <request identifier=oai:HAL:hal-00858095v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:hal-00858095v1</identifier> <datestamp>2018-01-11</datestamp> <setSpec>type:ART</setSpec> <setSpec>subject:sdu</setSpec> <setSpec>subject:phys</setSpec> <setSpec>subject:sde</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:SDE</setSpec> <setSpec>collection:GM</setSpec> <setSpec>collection:GIP-BE</setSpec> <setSpec>collection:AGROPOLIS</setSpec> <setSpec>collection:INSU</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:B3ESTE</setSpec> <setSpec>collection:UNIV-MONTPELLIER</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=en>Marble decay induced by thermal strains: simulations and experiments</title> <creator>Shushakova, Victoria</creator> <creator>Fuller, Edwin R.</creator> <creator>Heidelbach, Florian</creator> <creator>MAINPRICE, David</creator> <creator>Siegesmund, Siegfried</creator> <contributor>Geowissenschaftliches Zentrum der Universität Göttingen ; Université du Québec</contributor> <contributor>Bayerisches Geoinstitut ; Universität Bayreuth</contributor> <contributor>Manteau et Interfaces ; Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS) - Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS)</contributor> <description>International audience</description> <source>ISSN: 1866-6280</source> <source>EISSN: 1866-6299</source> <source>Environmental Earth Sciences</source> <publisher>Springer</publisher> <identifier>hal-00858095</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-00858095</identifier> <source>https://hal.archives-ouvertes.fr/hal-00858095</source> <source>Environmental Earth Sciences, Springer, 2013, 69 (4), pp.1281-1297. 〈10.1007/s12665-013-2406-z〉</source> <identifier>DOI : 10.1007/s12665-013-2406-z</identifier> <relation>info:eu-repo/semantics/altIdentifier/doi/10.1007/s12665-013-2406-z</relation> <language>en</language> <subject lang=en>Marble</subject> <subject lang=en>Calcite</subject> <subject lang=en>Dolomite</subject> <subject lang=en>Finite-element simulations</subject> <subject lang=en>Thermal expansion anisotropy</subject> <subject lang=en>EBSD</subject> <subject lang=en>Maximum principal stress</subject> <subject lang=en>Coefficients of thermal expansion</subject> <subject>[SDU.STU.GP] Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph]</subject> <subject>[PHYS.PHYS.PHYS-GEO-PH] Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph]</subject> <subject>[SDE.MCG] Environmental Sciences/Global Changes</subject> <type>info:eu-repo/semantics/article</type> <type>Journal articles</type> <description lang=en>Thermoelastic behavior of different marble types was analyzed using computational modeling and experimental measurements. Eight marble samples with different composition, grain size, grain boundary geometry, and texture were investigated. Calcitic and dolomitic marbles were considered. The average grain size varies from 75 μm to 1.75 mm; grain boundary geometry differs from nearly equigranular straight grain boundaries to inequigranular-interlobate grain boundaries. Four typical marble texture types were observed by EBSD measurements: weak texture; strong texture; girdle texture and high-temperature texture. These crystallographic orientations were used in conjunction with microstructure-based finite element analysis to compute the thermoelastic responses of marble upon heating. Microstructural response maps highlight regions and conditions in the marble fabric that are susceptible to degradation phenomena. This behavior was compared to the measured thermal expansion behavior, which shows increasing residual strains upon repetitive heating-cooling cycles. The thermal expansion behavior as a function of temperature changes can be classified into four categories: (a) isotropic thermal expansion with small or no residual strain; (b) anisotropic thermal expansion with small or no residual strain; (c) isotropic thermal expansion with a residual strain; and (d) anisotropic thermal expansion with residual strain. Thermal expansion coefficients were calculated for both simulated and experimental data and also modeled from the texture using the MTEX software. Fabric parameters control the amount and directional dependence of the thermal expansion. Marbles with strong texture show higher directional dependence of the thermal expansion coefficients and have smaller microstructural values of the maximum principal stress and strain energy density, the main precursors of microcracking throughout the marble fabric. In contrast, marbles with weak texture show isotropic thermal expansion behavior, have a higher propensity to microcracking, and exhibit higher values of maximum principal stress and strain energy density. Good agreement between the experimental and computational results is observed, demonstrating that microstructure-based finite-element simulations are an excellent tool for elucidating influences of rock fabric on thermoelastic behavior.</description> <date>2013-06</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>