untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-15T18:22:46Z</responseDate> <request identifier=oai:HAL:insu-00373705v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:insu-00373705v1</identifier> <datestamp>2018-01-11</datestamp> <setSpec>type:ART</setSpec> <setSpec>subject:sdu</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:GR</setSpec> <setSpec>collection:GM</setSpec> <setSpec>collection:UNIV-RENNES1</setSpec> <setSpec>collection:OSUR</setSpec> <setSpec>collection:AGROPOLIS</setSpec> <setSpec>collection:GIP-BE</setSpec> <setSpec>collection:INSU</setSpec> <setSpec>collection:GR9</setSpec> <setSpec>collection:UR1-HAL</setSpec> <setSpec>collection:UR1-SDLM</setSpec> <setSpec>collection:GR-DIMENV</setSpec> <setSpec>collection:OSUR-OSU</setSpec> <setSpec>collection:B3ESTE</setSpec> <setSpec>collection:UNIV-MONTPELLIER</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=en>Non-Fickian dispersion in porous media explained by heterogeneous microscale matrix diffusion</title> <creator>Gouze, Philippe</creator> <creator>Melean, Yasmin</creator> <creator>Le Borgne, Tanguy</creator> <creator>Dentz, Marco</creator> <creator>Carrera, Jesus</creator> <contributor>Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS)</contributor> <contributor>Géosciences Rennes (GR) ; Université de Rennes 1 (UR1) - Institut national des sciences de l'Univers (INSU - CNRS) - Centre Armoricain de Recherches en Environnement - Centre National de la Recherche Scientifique (CNRS)</contributor> <contributor>Department of Geotechnical Engineering and Geosciences ; Technical University of Catalonia (UPC)</contributor> <contributor>Institute of Earth Sciences Jaume Almera ; Consejo Superior de Investigaciones Científicas [Spain] (CSIC)</contributor> <description>International audience</description> <source>ISSN: 0043-1397</source> <source>EISSN: 1944-7973</source> <source>Water Resources Research</source> <publisher>American Geophysical Union</publisher> <identifier>insu-00373705</identifier> <identifier>https://hal-insu.archives-ouvertes.fr/insu-00373705</identifier> <identifier>https://hal-insu.archives-ouvertes.fr/insu-00373705/document</identifier> <identifier>https://hal-insu.archives-ouvertes.fr/insu-00373705/file/Gouze_et_al-2008-Water_Resources_Research.pdf</identifier> <source>https://hal-insu.archives-ouvertes.fr/insu-00373705</source> <source>Water Resources Research, American Geophysical Union, 2008, 44, pp.W11416. 〈10.1029/2007WR006690〉</source> <identifier>DOI : 10.1029/2007WR006690</identifier> <relation>info:eu-repo/semantics/altIdentifier/doi/10.1029/2007WR006690</relation> <language>en</language> <subject>[SDU.STU.HY] Sciences of the Universe [physics]/Earth Sciences/Hydrology</subject> <type>info:eu-repo/semantics/article</type> <type>Journal articles</type> <description lang=en>Mobile-immobile mass transfer is widely used to model non-Fickian dispersion in porous media. Nevertheless, the memory function, implemented in the sink/source term of the transport equation to characterize diffusion in the matrix (i.e., the immobile domain), is rarely measured directly. Therefore, the question can be posed as to whether the memory function is just a practical way of increasing the degrees of freedom for fitting tracer test breakthrough curves or whether it actually models the physics of tracer transport. In this paper we first present a technique to measure the memory function of aquifer samples and then compare the results with the memory function fitted from a set of field-scale tracer tests performed in the same aquifer. The memory function is computed by solving the matrix diffusion equation using a random walk approach. The properties that control diffusion (i.e., mobile-immobile interface and immobile domain cluster shapes, porosity, and tortuosity) are investigated by X-ray microtomography. Once the geometry of the matrix clusters is measured, the shape of the memory function is controlled by the value of the porosity at the percolation threshold and of the tortuosity of the diffusion path. These parameters can be evaluated from microtomographic images. The computed memory function compares well with the memory function deduced from the field-scale tracer tests. We conclude that for the reservoir rock studied here, the atypical non-Fickian dispersion measured from the tracer test is well explained by microscale diffusion processes in the immobile domain. A diffusion-controlled mobileimmobile mass transfer model therefore appears to be valid for this specific case.</description> <date>2008</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>