untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-15T18:37:05Z</responseDate> <request identifier=oai:HAL:hal-00773194v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:hal-00773194v1</identifier> <datestamp>2017-12-21</datestamp> <setSpec>type:ART</setSpec> <setSpec>subject:math</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:INSMI</setSpec> <setSpec>collection:TDS-MACS</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=es>Proximal point algorithm extended to equilibrium problems</title> <creator>Moudafi, Abdellatif</creator> <contributor>Département de Mathématiques et Informatique (D.M.I.) ; Université des Antilles et de la Guyane (UAG) - Université des Antilles (Pôle Guadeloupe) ; Université des Antilles (UA) - Université des Antilles (UA)</contributor> <description>International audience</description> <source>Journal of Natural Geometry</source> <identifier>hal-00773194</identifier> <identifier>https://hal.univ-antilles.fr/hal-00773194</identifier> <source>https://hal.univ-antilles.fr/hal-00773194</source> <source>Journal of Natural Geometry, 1999, 15 (1-2), pp.91-100</source> <language>en</language> <subject>[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]</subject> <type>info:eu-repo/semantics/article</type> <type>Journal articles</type> <description lang=en>The author proposes a generalized proximal method for solving an equilibrium problem which consists in finding x 2 K such that F(x, y) 0, for all y 2 K, where K is a nonempty, convex and closed set of a real Hilbert space X, and F:K ×K !Ris a given bifunction with F(x, x) = 0 for all x 2 K. The weak convergence of the sequence generated by the method is proved under the assumptions of monotonicity and convexity, with respect to the second argument y (for every fixed x 2 K), of the bifunction F. Replacing the assumption of monotonicity with the one of strong monotonicity on F, a strong convergence result is obtained. A second strong convergence theorem is proved under the hypotheses of monotonicity and a new assumption of "co-Lipschitz continuity at 0" of the operator F. Applications to convex optimization, to the problem of finding a zero of a maximal monotone operator and to Nash equilibria problems are provided.</description> <date>1999-10-28</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>