untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-15T15:41:23Z</responseDate> <request identifier=oai:HAL:hal-00411460v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:hal-00411460v1</identifier> <datestamp>2018-01-11</datestamp> <setSpec>type:ART</setSpec> <setSpec>subject:sdu</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:GM</setSpec> <setSpec>collection:GIP-BE</setSpec> <setSpec>collection:AGROPOLIS</setSpec> <setSpec>collection:INSU</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:B3ESTE</setSpec> <setSpec>collection:UNIV-MONTPELLIER</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=en>Predicted glide systems and crystal preferred orientations of polycrystalline silicate Mg-Perovskite at high pressure: Implications for the seismic anisotropy in the lower mantle</title> <creator>Mainprice, Dave</creator> <creator>Tommasi, Andrea</creator> <creator>Ferre, D.</creator> <creator>Carrez, P.</creator> <creator>Cordier, P.</creator> <contributor>Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS)</contributor> <contributor>Laboratoire de structures et propriétés de l'état solide (LSPES) ; Université de Lille, Sciences et Technologies - Centre National de la Recherche Scientifique (CNRS)</contributor> <description>International audience</description> <source>ISSN: 0012-821X</source> <source>Earth and Planetary Science Letters</source> <publisher>Elsevier</publisher> <identifier>hal-00411460</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-00411460</identifier> <source>https://hal.archives-ouvertes.fr/hal-00411460</source> <source>Earth and Planetary Science Letters, Elsevier, 2008, 271 (1-4), pp.135-144. 〈10.1016/j.epsl.2008.03.058〉</source> <identifier>DOI : 10.1016/j.epsl.2008.03.058</identifier> <relation>info:eu-repo/semantics/altIdentifier/doi/10.1016/j.epsl.2008.03.058</relation> <language>en</language> <subject lang=en>perovskite</subject> <subject lang=en>ab initio</subject> <subject lang=en>dislocation creep</subject> <subject lang=en>glide systems</subject> <subject lang=en>crystal preferred orientation</subject> <subject lang=en>seismic anisotropy</subject> <subject lang=en>lower mantle</subject> <subject>[SDU.STU.PE] Sciences of the Universe [physics]/Earth Sciences/Petrography</subject> <type>info:eu-repo/semantics/article</type> <type>Journal articles</type> <description lang=en>We use first first-principle methods and the Peierls-Nabarro model to evaluate the resistance to glide, characterized by the Peierls stress, of glide systems for end-member MgSiO3 Perovskite at mantle pressures. [010](100) is the easiest glide system in Mg-Perovskite at all pressures. Peierls stresses increase systematically with pressure for all systems except [001](010), indicating the importance of lattice friction at lower mantle pressures. The ratio of the maximum Peierls stress for each system relative to the [010](100) value defines their critical resolved shear stress (CRSS). These CRSS are used in a visco-plastic self-consistent homogenization model to predict the evolution of crystal preferred orientations (CPO) during deformation of polycrystalline Mg-Perovskite. In axial compression, [100] tends to align with the compression direction, in agreement with in situ observations in axial compression experiments. In simple shear, [010] concentrates near the shear direction and (100), although more dispersed, tends to align near the shear plane, consistent with the dominant activity of the easier [010](100) system. The calculated seismic anisotropy for a 100% Mg-Perovskite aggregate using the CPO in simple shear and the elastic constants Of MgSiO3 perovskite at lower mantle pressures and temperatures is weak (>3% for P-waves with and >2% for S-waves) and decreases with increasing temperature and pressure. P-waves show the fastest propagation parallel to the lineation and S-waves fast polarization is in the foliation at 38 GPa and normal to the lineation at 88 GPa. This weak anisotropy is consistent with global seismological observations of a nearly isotropic lower mantle. There are however two regions where strain-induced Mg-Perovskite CPO could contribute to anisotropy; a) low temperature regions in the uppermost lower mantle, where the predicted S-wave polarization anisotropy may attain 1.6% with a fast polarization parallel to the foliation, b) in high high-temperature domains in the D '' layer, where Mg-Perovskite may be the major stable phase, leading to polarization of fast S-waves normal to the lineation for propagation directions at high angle to the lineation and an apparent isotropy for all other propagation directions.</description> <date>2008</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>