untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-17T12:07:45Z</responseDate> <request identifier=oai:HAL:hal-01544762v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:hal-01544762v1</identifier> <datestamp>2018-01-12</datestamp> <setSpec>type:ART</setSpec> <setSpec>subject:sdv</setSpec> <setSpec>collection:EVOLUTION_PARIS_SEINE</setSpec> <setSpec>collection:UPMC</setSpec> <setSpec>collection:EVOL_PARIS_SEINE-EGE</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:UNICE</setSpec> <setSpec>collection:SAE</setSpec> <setSpec>collection:GIP-BE</setSpec> <setSpec>collection:UPMC_POLE_4</setSpec> <setSpec>collection:IBPS</setSpec> <setSpec>collection:UCA-TEST</setSpec> <setSpec>collection:UNIV-COTEDAZUR</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=en>Evolution of Coding Microsatellites in Primate Genomes</title> <creator>Loire, Etienne</creator> <creator>Higuet, Dominique</creator> <creator>Netter, Pierre</creator> <creator>Achaz, Guillaume</creator> <contributor>Evolution des Génomes Eucaryotes (EGE) ; Systématique, adaptation, évolution (SAE) ; Université Pierre et Marie Curie - Paris 6 (UPMC) - Centre National de la Recherche Scientifique (CNRS) - Université Pierre et Marie Curie - Paris 6 (UPMC) - Centre National de la Recherche Scientifique (CNRS) - Evolution Paris Seine ; Université Nice Sophia Antipolis (UNS) ; Université Côte d'Azur (UCA) - Université Côte d'Azur (UCA) - Centre National de la Recherche Scientifique (CNRS) - Université des Antilles et de la Guyane (UAG) - Université Pierre et Marie Curie - Paris 6 (UPMC) - Université Nice Sophia Antipolis (UNS) ; Université Côte d'Azur (UCA) - Université Côte d'Azur (UCA) - Université des Antilles et de la Guyane (UAG)</contributor> <contributor>Groupement des Entreprises Francaises dans la lutte contre le Cancer (GEFLUC)</contributor> <contributor> CNRS through a Projets Exploratoires/Premier Soutien grant</contributor> <description>International audience</description> <source>ISSN: 1759-6653</source> <source>EISSN: 1759-6653</source> <source>Genome Biology and Evolution</source> <publisher>Society for Molecular Biology and Evolution</publisher> <identifier>hal-01544762</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-01544762</identifier> <source>https://hal.archives-ouvertes.fr/hal-01544762</source> <source>Genome Biology and Evolution, Society for Molecular Biology and Evolution, 2013, 5 (2), pp.283-295. 〈10.1093/gbe/evt003〉</source> <identifier>DOI : 10.1093/gbe/evt003</identifier> <relation>info:eu-repo/semantics/altIdentifier/doi/10.1093/gbe/evt003</relation> <language>en</language> <subject lang=en>SSR</subject> <subject lang=en> microsatellites</subject> <subject lang=en> phylogeny</subject> <subject lang=en> primate genomes</subject> <subject>[SDV.BID] Life Sciences [q-bio]/Biodiversity</subject> <type>info:eu-repo/semantics/article</type> <type>Journal articles</type> <description lang=en>Microsatellites (SSRs) are highly susceptible to expansions and contractions. When located in a coding sequence, the insertion or the deletion of a single unit for a mono-, di-, tetra-, or penta(nucleotide)-SSR creates a frameshift. As a consequence, one would expect to find only very few of these SSRs in coding sequences because of their strong deleterious potential. Unexpectedly, genomes contain many coding SSRs of all types. Here, we report on a study of their evolution in a phylogenetic context using the genomes of four primates: human, chimpanzee, orangutan, and macaque. In a set of 5,015 orthologous genes unambiguously aligned among the four species, we show that, except for tri- and hexa-SSRs, for which insertions and deletions are frequently observed, SSRs in coding regions evolve mainly by substitutions. We show that the rate of substitution in all types of coding SSRs is typically two times higher than in the rest of coding sequences. Additionally, we observe that although numerous coding SSRs are created and lost by substitutions in the lineages, their numbers remain constant. This last observation suggests that the coding SSRs have reached equilibrium. We hypothesize that this equilibrium involves a combination of mutation, drift, and selection. We thus estimated the fitness cost of mono-SSRs and show that it increases with the number of units. We finally show that the cost of coding mono-SSRs greatly varies from function to function, suggesting that the strength of the selection that acts against them can be correlated to gene functions.</description> <date>2013</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>