untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-15T15:37:36Z</responseDate> <request identifier=oai:HAL:hal-00564518v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:hal-00564518v1</identifier> <datestamp>2018-01-11</datestamp> <setSpec>type:ART</setSpec> <setSpec>subject:sdu</setSpec> <setSpec>subject:sde</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:INSU</setSpec> <setSpec>collection:SDE</setSpec> <setSpec>collection:GM</setSpec> <setSpec>collection:PRUNEL</setSpec> <setSpec>collection:ENS-LYON</setSpec> <setSpec>collection:LGL-TPE</setSpec> <setSpec>collection:GIP-BE</setSpec> <setSpec>collection:AGROPOLIS</setSpec> <setSpec>collection:B3ESTE</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:UNIV-MONTPELLIER</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=en>Elasticity of glaucophane and seismic properties of high-pressure low-temperature oceanic rocks in subduction zones</title> <creator>Bezacier, L.</creator> <creator>Reynard, B.</creator> <creator>Bass, J.D.</creator> <creator>Wang, J.</creator> <creator>MAINPRICE, David</creator> <contributor>Laboratoire de Sciences de la Terre (LST) ; École normale supérieure - Lyon (ENS Lyon) - Université Claude Bernard Lyon 1 (UCBL) - Institut national des sciences de l'Univers (INSU - CNRS) - Centre National de la Recherche Scientifique (CNRS)</contributor> <contributor>University of Illinois at Urbana-Champaign [Urbana]</contributor> <contributor>Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS)</contributor> <description>International audience</description> <source>ISSN: 0040-1951</source> <source>EISSN: 1879-3266</source> <source>Tectonophysics</source> <publisher>Elsevier</publisher> <identifier>hal-00564518</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-00564518</identifier> <source>https://hal.archives-ouvertes.fr/hal-00564518</source> <source>Tectonophysics, Elsevier, 2010, 494 (3-4), pp.201-210. 〈10.1016/j.tecto.2010.09.011〉</source> <identifier>DOI : 10.1016/j.tecto.2010.09.011</identifier> <relation>info:eu-repo/semantics/altIdentifier/doi/10.1016/j.tecto.2010.09.011</relation> <language>en</language> <subject lang=it>Blueschist</subject> <subject lang=it>Epidote</subject> <subject lang=it>Anisotropy</subject> <subject lang=it>Eclogite</subject> <subject lang=it>Elasticity</subject> <subject lang=it>Glaucophane</subject> <subject>[SDU.STU.TE] Sciences of the Universe [physics]/Earth Sciences/Tectonics</subject> <subject>[SDE.MCG] Environmental Sciences/Global Changes</subject> <type>info:eu-repo/semantics/article</type> <type>Journal articles</type> <description lang=en>Upon subduction, the oceanic crust transforms to blueschists and eclogites, with seismic properties that gradually become similar to those of the surrounding mantle. In order to evaluate the anisotropy of blueschists and glaucophane-bearing eclogites, the elastic constants of glaucophane single-crystal plates from the Sesia-Lanzo Zone (Aosta Valley, Western Alps) were measured using Brillouin spectroscopy at ambient conditions. The mean P- and S-wave velocities are 7.8 and 4.6 km s−1 respectively, and the anisotropy is high (38.1% (AVP) and 27.3% (AVS)). Glaucophane develops strong LPO, characterized by the [001]-axes concentrated sub-parallel to the lineation, and the {110} poles concentrated sub-perpendicular to the foliation in both blueschist and eclogite rocks. The measured LPO is in good agreement with viscoplastic selfconsistent numerical models. Seismic properties of glaucophane-bearing blueschist and eclogite are calculated by combining measured LPO and the single-crystal elastic moduli of glaucophane with the other main mineral constituents of the rock: mostly epidote for blueschist, and omphacite and garnet for eclogite. Blueschists present stronger anisotropies (AVP=16.1% and AVS=10.3%) than eclogites (AVP=2.9% and AVS=1.7%). The shear-wave splitting and resulting delay times for a 7-km thick layer of eclogite or blueschist are low for the eclogite (b0.03 s), but signi!cant for blueschist (0.16 s). Application to the subducted oceanic crust yields a decrease of velocity contrast with the surrounding mantle and of anisotropy at depth depending on the temperature of the slab. The details of the velocity variations in subducted oceanic crust are dif!cult to reconcile with the blueschist-eclogite transition as probed by exhumed metamorphic rocks and may require additional phases such as lawsonite or chemical variations such as oxidation state.</description> <date>2010-09-17</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>