untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-15T15:41:07Z</responseDate> <request identifier=oai:HAL:hal-00412016v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:hal-00412016v1</identifier> <datestamp>2018-01-11</datestamp> <setSpec>type:ART</setSpec> <setSpec>subject:sdu</setSpec> <setSpec>subject:sde</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:SDE</setSpec> <setSpec>collection:GM</setSpec> <setSpec>collection:GIP-BE</setSpec> <setSpec>collection:AGROPOLIS</setSpec> <setSpec>collection:INSU</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:B3ESTE</setSpec> <setSpec>collection:UNIV-MONTPELLIER</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=en>Fault-induced seismic anisotropy by hydration in subducting oceanic plates</title> <creator>Faccenda, M.</creator> <creator>Burlini, L.</creator> <creator>Gerya, T. V.</creator> <creator>MAINPRICE, David</creator> <contributor>Institute of Geophysics [Zurich] ; Swiss Federal Institute of Technology in Zürich (ETH Zürich)</contributor> <contributor>Institute of Geology, ETH Zürich ; Université du Québec</contributor> <contributor>Institute of Geophysics, ETH Zürich ; Université du Québec</contributor> <contributor>Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS)</contributor> <description>International audience</description> <source>ISSN: 0028-0836</source> <source>EISSN: 1476-4679</source> <source>Nature</source> <publisher>Nature Publishing Group</publisher> <identifier>hal-00412016</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-00412016</identifier> <source>https://hal.archives-ouvertes.fr/hal-00412016</source> <source>Nature, Nature Publishing Group, 2008, 455 (7216), pp.1097-1100. 〈10.1038/nature07376〉</source> <identifier>DOI : 10.1038/nature07376</identifier> <relation>info:eu-repo/semantics/altIdentifier/doi/10.1038/nature07376</relation> <language>en</language> <subject lang=en>olivine</subject> <subject lang=en>serpentinization</subject> <subject lang=en>ones</subject> <subject lang=en>crustal rocks</subject> <subject lang=en>elastic-constants</subject> <subject lang=en>Shear-wave anisotropy</subject> <subject lang=en>middle america trench</subject> <subject lang=en>upper-mantle</subject> <subject lang=en>active deformation</subject> <subject lang=en>beneath</subject> <subject>[SDU.STU.TE] Sciences of the Universe [physics]/Earth Sciences/Tectonics</subject> <subject>[SDE.MCG] Environmental Sciences/Global Changes</subject> <subject>[SDU.STU.PE] Sciences of the Universe [physics]/Earth Sciences/Petrography</subject> <type>info:eu-repo/semantics/article</type> <type>Journal articles</type> <description lang=en>The variation of elastic- wave velocities as a function of the direction of propagation through the Earth's interior is a widely documented phenomenon called seismic anisotropy. The geometry and amount of seismic anisotropy is generally estimated by measuring shearwave splitting, which consists of determining the polarization direction of the fast shear- wave component and the time delay between the fast and slow, orthogonally polarized, waves. In subduction zones, the teleseismic fast shear- wave component is oriented generally parallel to the strike of the trench(1), although a few exceptions have been reported (Cascadia(2) and restricted areas of South America(3,4)). The interpretation of shear- wave splitting above subduction zones has been controversial and none of the inferred models seems to be sufficiently complete to explain the entire range of anisotropic patterns registered worldwide(1). Here we show that the amount and the geometry of seismic anisotropies measured in the forearc regions of subduction zones strongly depend on the preferred orientation of hydrated faults in the subducting oceanic plate. The anisotropy originates from the crystallographic preferred orientation of highly anisotropic hydrous minerals (serpentine and talc) formed along steeply dipping faults and from the larger- scale vertical layering consisting of dry and hydrated crust - mantle sections whose spacing is several times smaller than teleseismic wavelengths. Fault orientations and estimated delay times are consistent with the observed shear- wave splitting patterns in most subduction zones.</description> <date>2008</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>