29 documents satisfont la requête. Vérifiez les termes recherchés ou relancez la recherche sur le texte intégral
Deep circulation in the equatorial Atlantic Ocean
Auteur(s) : Gouriou, Y Andrie, C Bourles, B Freudenthal, S Arnault, S Aman, A Eldin, G Du Penhoat, Y
Partager

| Plus
Superfast Spreading Rate Crust 4 Integrated Ocean Drilling Program Expedition 335 Scientific Prospectus
Auteur(s) : Teagle, D. Ildefonse, Benoit Blum, P.
Auteurs secondaires : National Oceanography Centre, Southampton ; Université du Québec Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS) Texas A&M University [College Station]
Partager

200 mm/y) to exploit the observed relationship between spreading rate and depth to axial low velocity zones, thought to be magma chambers, seismically imaged at active mid-ocean ridges. This was a deliberate strategy to reduce the drilling distance to gabbroic rocks because thick sequences of lavas and dikes have proved difficult to penetrate in past. ODP Leg 206 (2002) initiated operations at Site 1256, including the installation in Hole 1256D of a reentry cone with 16 inch casing inserted through the 250 m thick sedimentary cover and cemented into basement to facilitate deep drilling. The hole was then cored ~500 m into basement. IODP Expeditions 309 and 312 (2005) successfully completed the first sampling of an intact section of upper oceanic crust from lavas, through the sheeted dikes, and into the upper gabbros. Hole 1256D now penetrates >1500 meters below seafloor (mbsf) and >1250 m subbasement and currently resides in the dike–gabbro transition zone. The first gabbroic rocks were encountered at 1407 mbsf. Below this lies a ~100 m complex zone of fractionated gabbros intruded into contact metamorphosed dikes. Although previous cruises achieved the benchmark objective of reaching gabbro in intact ocean crust, critical scientific questions remain. These include the following: 1. Does the lower crust form by the recrystallization and subsidence of a high-level magma chamber (gabbro glacier), crustal accretion by intrusion of sills throughout the lower crust, or some other mechanism? 2. Is the plutonic crust cooled by conduction or hydrothermal circulation? 3. What is the geological nature of Layer 3 and the Layer 2/3 boundary at Site 1256? 4. What is the magnetic contribution of the lower crust to marine magnetic anomalies? Hole 1256D is poised at a depth where samples that should conclusively address these questions can be obtained, possibly with only a few hundred meters of drilling. Importantly, as of the end of Expedition 312, the hole was clear of debris and open to its full depth. Increased rates of penetration (1.2 m/h) and enhanced core recovery (>35%) in the gabbros indicate that this return to Hole 1256D could deepen the hole >300 m into plutonic rocks, past the transition from dikes to gabbro, and into a region of solely cumulate gabbroic rocks."> 200 mm/y) to exploit the observed relationship between spreading rate and depth to axial low velocity zones, thought to be magma chambers, seismically imaged at active mid-ocean ridges. This was a deliberate strategy to reduce the drilling distance to gabbroic rocks because thick sequences of lavas and dikes have proved difficult to penetrate in past. ODP Leg 206 (2002) initiated operations at Site 1256, including the installation in Hole 1256D of a reentry cone with 16 inch casing inserted through the 250 m thick sedimentary cover and cemented into basement to facilitate deep drilling. The hole was then cored ~500 m into basement. IODP Expeditions 309 and 312 (2005) successfully completed the first sampling of an intact section of upper oceanic crust from lavas, through the sheeted dikes, and into the upper gabbros. Hole 1256D now penetrates >1500 meters below seafloor (mbsf) and >1250 m subbasement and currently resides in the dike–gabbro transition zone. The first gabbroic rocks were encountered at 1407 mbsf. Below this lies a ~100 m complex zone of fractionated gabbros intruded into contact metamorphosed dikes. Although previous cruises achieved the benchmark objective of reaching gabbro in intact ocean crust, critical scientific questions remain. These include the following: 1. Does the lower crust form by the recrystallization and subsidence of a high-level magma chamber (gabbro glacier), crustal accretion by intrusion of sills throughout the lower crust, or some other mechanism? 2. Is the plutonic crust cooled by conduction or hydrothermal circulation? 3. What is the geological nature of Layer 3 and the Layer 2/3 boundary at Site 1256? 4. What is the magnetic contribution of the lower crust to marine magnetic anomalies? Hole 1256D is poised at a depth where samples that should conclusively address these questions can be obtained, possibly with only a few hundred meters of drilling. Importantly, as of the end of Expedition 312, the hole was clear of debris and open to its full depth. Increased rates of penetration (1.2 m/h) and enhanced core recovery (>35%) in the gabbros indicate that this return to Hole 1256D could deepen the hole >300 m into plutonic rocks, past the transition from dikes to gabbro, and into a region of solely cumulate gabbroic rocks."> 200 mm/y) to exploit the observed relationship between spreading rate and depth to axial low velocity zones, thought to be magma chambers, seismically imaged at active mid-ocean ridges. This was a deliberate strategy to reduce the drilling distance to gabbroic rocks because thick sequences of lavas and dikes have proved difficult to penetrate in past. ODP Leg 206 (2002) initiated operations at Site 1256, including the installation in Hole 1256D of a reentry cone with 16 inch casing inserted through the 250 m thick sedimentary cover and cemented into basement to facilitate deep drilling. The hole was then cored ~500 m into basement. IODP Expeditions 309 and 312 (2005) successfully completed the first sampling of an intact section of upper oceanic crust from lavas, through the sheeted dikes, and into the upper gabbros. Hole 1256D now penetrates >1500 meters below seafloor (mbsf) and >1250 m subbasement and currently resides in the dike–gabbro transition zone. The first gabbroic rocks were encountered at 1407 mbsf. Below this lies a ~100 m complex zone of fractionated gabbros intruded into contact metamorphosed dikes. Although previous cruises achieved the benchmark objective of reaching gabbro in intact ocean crust, critical scientific questions remain. These include the following: 1. Does the lower crust form by the recrystallization and subsidence of a high-level magma chamber (gabbro glacier), crustal accretion by intrusion of sills throughout the lower crust, or some other mechanism? 2. Is the plutonic crust cooled by conduction or hydrothermal circulation? 3. What is the geological nature of Layer 3 and the Layer 2/3 boundary at Site 1256? 4. What is the magnetic contribution of the lower crust to marine magnetic anomalies? Hole 1256D is poised at a depth where samples that should conclusively address these questions can be obtained, possibly with only a few hundred meters of drilling. Importantly, as of the end of Expedition 312, the hole was clear of debris and open to its full depth. Increased rates of penetration (1.2 m/h) and enhanced core recovery (>35%) in the gabbros indicate that this return to Hole 1256D could deepen the hole >300 m into plutonic rocks, past the transition from dikes to gabbro, and into a region of solely cumulate gabbroic rocks."> 200 mm/y) to exploit the observed relationship between spreading rate and depth to axial low velocity zones, thought to be magma chambers, seismically imaged at active mid-ocean ridges. This was a deliberate strategy to reduce the drilling distance to gabbroic rocks because thick sequences of lavas and dikes have proved difficult to penetrate in past. ODP Leg 206 (2002) initiated operations at Site 1256, including the installation in Hole 1256D of a reentry cone with 16 inch casing inserted through the 250 m thick sedimentary cover and cemented into basement to facilitate deep drilling. The hole was then cored ~500 m into basement. IODP Expeditions 309 and 312 (2005) successfully completed the first sampling of an intact section of upper oceanic crust from lavas, through the sheeted dikes, and into the upper gabbros. Hole 1256D now penetrates >1500 meters below seafloor (mbsf) and >1250 m subbasement and currently resides in the dike–gabbro transition zone. The first gabbroic rocks were encountered at 1407 mbsf. Below this lies a ~100 m complex zone of fractionated gabbros intruded into contact metamorphosed dikes. Although previous cruises achieved the benchmark objective of reaching gabbro in intact ocean crust, critical scientific questions remain. These include the following: 1. Does the lower crust form by the recrystallization and subsidence of a high-level magma chamber (gabbro glacier), crustal accretion by intrusion of sills throughout the lower crust, or some other mechanism? 2. Is the plutonic crust cooled by conduction or hydrothermal circulation? 3. What is the geological nature of Layer 3 and the Layer 2/3 boundary at Site 1256? 4. What is the magnetic contribution of the lower crust to marine magnetic anomalies? Hole 1256D is poised at a depth where samples that should conclusively address these questions can be obtained, possibly with only a few hundred meters of drilling. Importantly, as of the end of Expedition 312, the hole was clear of debris and open to its full depth. Increased rates of penetration (1.2 m/h) and enhanced core recovery (>35%) in the gabbros indicate that this return to Hole 1256D could deepen the hole >300 m into plutonic rocks, past the transition from dikes to gabbro, and into a region of solely cumulate gabbroic rocks."> | 200 mm/y) to exploit the observed relationship between spreading rate and depth to axial low velocity zones, thought to be magma chambers, seismically imaged at active mid-ocean ridges. This was a deliberate strategy to reduce the drilling distance to gabbroic rocks because thick sequences of lavas and dikes have proved difficult to penetrate in past. ODP Leg 206 (2002) initiated operations at Site 1256, including the installation in Hole 1256D of a reentry cone with 16 inch casing inserted through the 250 m thick sedimentary cover and cemented into basement to facilitate deep drilling. The hole was then cored ~500 m into basement. IODP Expeditions 309 and 312 (2005) successfully completed the first sampling of an intact section of upper oceanic crust from lavas, through the sheeted dikes, and into the upper gabbros. Hole 1256D now penetrates >1500 meters below seafloor (mbsf) and >1250 m subbasement and currently resides in the dike–gabbro transition zone. The first gabbroic rocks were encountered at 1407 mbsf. Below this lies a ~100 m complex zone of fractionated gabbros intruded into contact metamorphosed dikes. Although previous cruises achieved the benchmark objective of reaching gabbro in intact ocean crust, critical scientific questions remain. These include the following: 1. Does the lower crust form by the recrystallization and subsidence of a high-level magma chamber (gabbro glacier), crustal accretion by intrusion of sills throughout the lower crust, or some other mechanism? 2. Is the plutonic crust cooled by conduction or hydrothermal circulation? 3. What is the geological nature of Layer 3 and the Layer 2/3 boundary at Site 1256? 4. What is the magnetic contribution of the lower crust to marine magnetic anomalies? Hole 1256D is poised at a depth where samples that should conclusively address these questions can be obtained, possibly with only a few hundred meters of drilling. Importantly, as of the end of Expedition 312, the hole was clear of debris and open to its full depth. Increased rates of penetration (1.2 m/h) and enhanced core recovery (>35%) in the gabbros indicate that this return to Hole 1256D could deepen the hole >300 m into plutonic rocks, past the transition from dikes to gabbro, and into a region of solely cumulate gabbroic rocks.">Plus
Evolution Géodynamique du domaine Ouest-offshore de la Nouvelle-Calédonie et de ses extensions vers la Nouvelle-Zélande
Auteur(s) : Collot, Julien
Partager

| Plus
Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution
Auteur(s) : Barnier, B Madec, G Penduff, T Molines, J Treguier, Anne-marie Le Sommer, J Beckmann, A Biastoch, A
Partager

| Plus
Phylogeography of a species complex of lowland Neotropical rain forest trees (Carapa, Meliaceae)
Auteur(s) : Scotti-Saintagne, Caroline Dick, Christopher W. Caron, Henri Vendramin, Giovanni G. Guichoux, Erwan Buonamici, Anna Duret, Caroline Sire, Pierre
Auteurs secondaires : Ecologie des forêts de Guyane (ECOFOG) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) - Institut National de la Recherche Agronomique (INRA) - Université des Antilles et de la Guyane (UAG) - AgroParisTech - Centre National de la Recherche Scientifique (CNRS) Department of Ecology and Evolutionary Biology ; University of Michigan [Ann Arbor] Biodiversité, Gènes et Communautés ; Institut National de Recherche Agronomique Laboratorio de Ecología de Plantas y Herbario QCA, Escuela de Ciencias Biológicas ; Pontificia Universidad Catolica del Ecuador Laboratório de Genética e Biologia Reprodutiva de Plantas ; Instituto Nacional de Pesquisas da Amazônia
Partager

| Plus
A comparison of dissolved and particulate mn and al distributions in the western north-atlantic
Auteur(s) : Yeats, Pa Dalziel, Ja Moran, Sb
Partager

| Plus
Axial incision: The key to understand submarine canyon evolution (in the western Gulf of Lion)
Auteur(s) : Baztan, Juan Berne, Serge Olivet, Jean-louis Rabineau, Marina Aslanian, Daniel Gaudin, Mathieu Rehault, Jean Pierre Canals, M
Partager

| Plus
Mio-Pliocene glaciations of Central Patagonia: New evidence and tectonic implications
Auteur(s) : Lagabrielle, Yves Scalabrino, Bruno Suarez, Manuel Ritz, Jean-Francois
Auteurs secondaires : Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS)
Partager

| Plus
Crustal structure and evolution of the Pyrenean-Cantabrian belt: A review and new interpretations from recent concepts and data
Auteur(s) : Teixell, A. Labaume, P. Ayarza, P. Espurt, N. de Saint Blanquat, M. Lagabrielle, Y.
Auteurs secondaires : Department of Geology ; Universitat Autònoma de Barcelona [Barcelona] (UAB) Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS) Universidad de Salamanca Centre européen de recherche et d'enseignement de géosciences de l'environnement (CEREGE) ; Institut de Recherche pour le Développement (IRD) - Aix Marseille Université (AMU) - Collège de France (CdF) - Institut national des sciences de l'Univers (INSU - CNRS) - Centre National de la Recherche Scientifique (CNRS) Géosciences Environnement Toulouse (GET) ; Institut de Recherche pour le Développement (IRD) - Université Paul Sabatier - Toulouse 3 (UPS) - Observatoire Midi-Pyrénées (OMP) - Centre National de la Recherche Scientifique (CNRS) Géosciences Rennes (GR) ; Université de Rennes 1 (UR1) - Institut national des sciences de l'Univers (INSU - CNRS) - Observatoire des Sciences de l'Univers de Rennes (OSUR) - Centre National de la Recherche Scientifique (CNRS)
Partager

| Plus