9 documents satisfont la requête. Vérifiez les termes recherchés ou relancez la recherche sur le texte intégral
Seismic hazard assessment for Tehran, Tabriz and Zandjan cities (NW Iran) based on morphotectonical and paleoseismological approaches. ; Evaluation de l'aléa sismique pour les villes de Téhéran, Tabriz et Zandjan dans le NW de l'Iran. Approche morphotectonique et paléosismologique.
Auteur(s) : Solaymani, Shahryar
Auteurs secondaires : Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS) Université Montpellier 2 Sciences et Techniques du Languedoc Hervé Philip
Partager

| Plus
Structure sismique de la zone de subduction des Petites Antilles : implications sur les dimensions de la zone sismogène interplaque ; Seismic structure of the Lesser Antilles subduction zone : relevance for the extent of the seismogenic zone
Auteur(s) : Evain, Mikael
Partager

| Plus
How wide is the seismogenic zone of the Lesser Antilles forearc?
Auteur(s) : Gutscher, Marc-andre Westbrook, Graham Marcaillou, Boris Graindorge, David Gailler, Audrey Pichot, Thibaud Maury, Rene
Partager

| Plus
Improvement of the knowledge in seismic hazard in the French Lesser Antilles: analysis of regional seismological and accelerometric data. ; Contribution à la connaissance de l'aléa sismique dans les Antilles françaises: analyses des données sismologiques et accélérométriques régionales.
Auteur(s) : Bengoubou-Valerius, Mendy,
Auteurs secondaires : Institut de Physique du Globe de Paris (IPGP) ; Université Pierre et Marie Curie - Paris 6 (UPMC) - Institut national des sciences de l'Univers (INSU - CNRS) - IPG PARIS - Université Paris Diderot - Paris 7 (UPD7) - Université de la Réunion (UR) - Centre National de la Recherche Scientifique (CNRS) Université des Antilles et de la Guyane (UAG) Bureau de Recherches Géologiques et Minières (BRGM) (BRGM) Université des Antilles-Guyane Auran Randrianasolo(arandria@univ-ag.fr)
Partager

| Plus
The morphostructural and paleoseismologycal analysis of the NW and SE segments of Pambak-Sevan-Syunik fault (PSS), Armenia ; Analyse cinématique et paléosismologique des terminaisons NW et SE de la faille Pampak-Sevan-Syunik (PSS), Arménie
Auteur(s) : Mkrtchyan, Mushegh
Auteurs secondaires : Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS) Université Montpellier Jean-François Ritz Ara Avagyan
Partager

| Plus
Deformation at the transition between subduction and collision east of Taiwan: seismological approach ; Déformation à la transition entre subduction et collision à l'est de Taïwan: approche sismologique
Auteur(s) : Theunissen, Thomas
Auteurs secondaires : Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS) Université Montpellier II - Sciences et Techniques du Languedoc Serge Lallemand(serge.lallemand@gm.univ-montp2.fr) ANR ACTS
Partager

180degre). Synthetic tests show the effectiveness of MAXI (using P-wave only) to determine the parameters x, y and z even when the azimuthal gap is important. In the latter case, the quality of the results is dependent on the velocity model to represent the 3D structure of the Earth. We propose an approach involving the use of a 3D a priori P-wave velocity model to locate earthquakes which are lateral and remote to the seismic network. An application to the case of Taiwan and Ecuador validates this approach. Finally, at the level of a few months, the marine geophysical campaign RATS (Ryukyu Arc: Tectonics and Seismology) was conducted in two stages. A passive seismology experiment from July to October, 2008 (RATS1) has been conducted over the forearc of the Ryukyus and then active seismic experiment (refraction and reflection) was conducted in May 2009 in a NNE - SSW line through the Ryukyu margin. These two combined experiments allow improving our knowledge about the crustal structure of the margin. At the level of the forearc, the basement of the forearc is characterized by vertical backstop and a very deformed basis certainly associated with a significant out of sequence deformation. In depth, the downgoing plate is certainly affected by a tear that controls the seismicity in the region of transition between the subduction and collision."> 180degre). Synthetic tests show the effectiveness of MAXI (using P-wave only) to determine the parameters x, y and z even when the azimuthal gap is important. In the latter case, the quality of the results is dependent on the velocity model to represent the 3D structure of the Earth. We propose an approach involving the use of a 3D a priori P-wave velocity model to locate earthquakes which are lateral and remote to the seismic network. An application to the case of Taiwan and Ecuador validates this approach. Finally, at the level of a few months, the marine geophysical campaign RATS (Ryukyu Arc: Tectonics and Seismology) was conducted in two stages. A passive seismology experiment from July to October, 2008 (RATS1) has been conducted over the forearc of the Ryukyus and then active seismic experiment (refraction and reflection) was conducted in May 2009 in a NNE - SSW line through the Ryukyu margin. These two combined experiments allow improving our knowledge about the crustal structure of the margin. At the level of the forearc, the basement of the forearc is characterized by vertical backstop and a very deformed basis certainly associated with a significant out of sequence deformation. In depth, the downgoing plate is certainly affected by a tear that controls the seismicity in the region of transition between the subduction and collision."> 180degre). Synthetic tests show the effectiveness of MAXI (using P-wave only) to determine the parameters x, y and z even when the azimuthal gap is important. In the latter case, the quality of the results is dependent on the velocity model to represent the 3D structure of the Earth. We propose an approach involving the use of a 3D a priori P-wave velocity model to locate earthquakes which are lateral and remote to the seismic network. An application to the case of Taiwan and Ecuador validates this approach. Finally, at the level of a few months, the marine geophysical campaign RATS (Ryukyu Arc: Tectonics and Seismology) was conducted in two stages. A passive seismology experiment from July to October, 2008 (RATS1) has been conducted over the forearc of the Ryukyus and then active seismic experiment (refraction and reflection) was conducted in May 2009 in a NNE - SSW line through the Ryukyu margin. These two combined experiments allow improving our knowledge about the crustal structure of the margin. At the level of the forearc, the basement of the forearc is characterized by vertical backstop and a very deformed basis certainly associated with a significant out of sequence deformation. In depth, the downgoing plate is certainly affected by a tear that controls the seismicity in the region of transition between the subduction and collision."> 180degre). Synthetic tests show the effectiveness of MAXI (using P-wave only) to determine the parameters x, y and z even when the azimuthal gap is important. In the latter case, the quality of the results is dependent on the velocity model to represent the 3D structure of the Earth. We propose an approach involving the use of a 3D a priori P-wave velocity model to locate earthquakes which are lateral and remote to the seismic network. An application to the case of Taiwan and Ecuador validates this approach. Finally, at the level of a few months, the marine geophysical campaign RATS (Ryukyu Arc: Tectonics and Seismology) was conducted in two stages. A passive seismology experiment from July to October, 2008 (RATS1) has been conducted over the forearc of the Ryukyus and then active seismic experiment (refraction and reflection) was conducted in May 2009 in a NNE - SSW line through the Ryukyu margin. These two combined experiments allow improving our knowledge about the crustal structure of the margin. At the level of the forearc, the basement of the forearc is characterized by vertical backstop and a very deformed basis certainly associated with a significant out of sequence deformation. In depth, the downgoing plate is certainly affected by a tear that controls the seismicity in the region of transition between the subduction and collision."> | 180degre). Synthetic tests show the effectiveness of MAXI (using P-wave only) to determine the parameters x, y and z even when the azimuthal gap is important. In the latter case, the quality of the results is dependent on the velocity model to represent the 3D structure of the Earth. We propose an approach involving the use of a 3D a priori P-wave velocity model to locate earthquakes which are lateral and remote to the seismic network. An application to the case of Taiwan and Ecuador validates this approach. Finally, at the level of a few months, the marine geophysical campaign RATS (Ryukyu Arc: Tectonics and Seismology) was conducted in two stages. A passive seismology experiment from July to October, 2008 (RATS1) has been conducted over the forearc of the Ryukyus and then active seismic experiment (refraction and reflection) was conducted in May 2009 in a NNE - SSW line through the Ryukyu margin. These two combined experiments allow improving our knowledge about the crustal structure of the margin. At the level of the forearc, the basement of the forearc is characterized by vertical backstop and a very deformed basis certainly associated with a significant out of sequence deformation. In depth, the downgoing plate is certainly affected by a tear that controls the seismicity in the region of transition between the subduction and collision.">Plus
RESSOURCES EN GÉOLOGIE CARIBÉENNE : LES APPORTS DE L'OUTIL GPS POUR L’ÉTUDE DES SÉISMES ET FAILLES MAJEURES DE RÉPUBLIQUE DOMINICAINE
Auteur(s) : Mazabraud, Yves Forissier, Thomas
Auteurs secondaires : Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS) Centre de recherches et de ressources en éducation et formation (CRREF) ; Université des Antilles et de la Guyane (UAG)
Partager

| Plus