36 documents satisfont la requête.
Cycle du mercure en estuaire, baie de Seine et pays de Caux
Auteur(s) : Laurier, Fabien
Partager

| Plus
Etude de la transition chenal-levées/lobe dans les systèmes turbiditiques récents. Application à l'éventail turbiditique de l'Amazone et au Néofan du Petit-Rhône
Auteur(s) : Jegou, Isabelle
Partager

| Plus
Tectonics and sedimentation interactions in the east Caribbean subduction zone: An overview from the Orinoco delta and the Barbados accretionary prism
Auteur(s) : Deville, Eric Mascle, A. Callec, Y. Huyghe, P. Lallemant, S. Lerat, O. Mathieu, X. De Carillo, C. Padron
Partager

| Plus
Vertical grain-size variability within a turbidite levee: Autocyclicity or allocyclicity? A case study from the Rhone neofan, Gulf of Lions, Western Mediterranean
Auteur(s) : Dennielou, Bernard Huchon, Agnès Beaudouin, Célia Berne, Serge
Partager

| Plus
Sediment distribution and evolution of sedimentary processes in a small sandy turbidite system (Golo system, Mediterranean Sea): implications for various geometries based on core framework
Auteur(s) : Gervais, A Mulder, T Savoye, Bruno Gonthier, E
Partager

| Plus
Record of extreme events in marine sediments offshore eastern Taiwan ; Enregistrement des évènements extrêmes dans les sédiments, à l'est de Taiwan
Auteur(s) : Lehu, Rémi
Auteurs secondaires : Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS) Université Montpellier II - Sciences et Techniques du Languedoc Serge Lallemand Shu-Kun Hsu
Partager

| Plus
Discovery of a giant deep-sea valley in the Indian Ocean, off eastern Africa: The Tanzania channel
Auteur(s) : Bourget, J. Zaragosi, S. Garlan, T. Gabelotaud, I. Guyomard, P. Dennielou, Bernard Ellouz-zimmermann, N. Schneider, J. L.
Partager

| Plus
Processes controlling a volcaniclastic turbiditic system during the last climatic cycle: Example of the Cilaos deep-sea fan, offshore La Réunion Island
Auteur(s) : Sisavath, Emmanuelle Mazuel, Aude Jorry, Stephan Babonneau, Nathalie Bachelery, Patrick De Voogd, Beatrice Salpin, Marie Emmanuel, Laurent
Partager

| Plus
Depositional environment and processes of formation of the Mn-carbonates in the paleoproterozoic black shales of the Franceville basin (2.1 GA ; Gabon) ; Environnement de dépôt et processus de formation des carbonates de manganèse dans les black shales paléoprotérozoiques du Bassin de Franceville (2.1 Ga ; Gabon)
Auteur(s) : DUBOIS, Manon
Auteurs secondaires : Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS) Université de Montpellier Michel Lopez Beate Orberger
Partager

| Plus
Discovery of a giant deep-sea valley in the Indian Ocean, off eastern Africa: The Tanzania channel
Auteur(s) : Bourget, J. Zaragosi, S. Garlan, T. Gabelotaud, I. Guyomard, P. Dennielou, Bernard Ellouz-zimmermann, N. Schneider, J. L.
Partager

| Plus
Dynamique des matières en suspensions minérales des eaux de surface de la Manche observée par satellite et modélisée numériquement.
Auteur(s) : Rivier, Aurelie
Partager

| Plus
The Var turbidite system (Ligurian Sea, northwestern Mediterranean) - morphology, sediment supply, construction of turbidite levee and sediment waves: implications for hydrocarbon reservoirs
Auteur(s) : Migeon, Sébastien Mulder, Thierry Savoye, Bruno Sage, Françoise
Partager

| Plus
Activity of the turbidite levees of the Celtic-Armorican margin (Bay of Biscay) during the last 30,000 years: Imprints of the last European deglaciation and Heinrich events
Auteur(s) : Toucanne, Samuel Zaragosi, S Bourillet, Jean-francois Naughton, F Cremer, M Eynaud, F Dennielou, Bernard
Partager

| Plus
Turbiditic levee deposition in response to climate changes: The Var Sedimentary Ridge (Ligurian Sea)
Auteur(s) : Jorry, Stephan Jegou, Isabelle Emmanuel, Laurent Silva Jacinto, Ricardo Savoye, Bruno
Partager

| Plus
Morphology and sedimentary architecture of a modern volcaniclastic turbidite system: The Cilaos fan, offshore La Reunion Island
Auteur(s) : Sisavath, Emmanuelle Babonneau, Nathalie Saint-ange, Francky Bachelery, Patrick Jorry, Stephan Deplus, Christine De Voogd, Beatrice Savoye, Bruno
Partager

| Plus
Analyse des processus sedimentaires recents dans l'eventail profond du Danube (mer Noire)
Auteur(s) : Popescu, Irina
Partager

| Plus
Tectono-thermal history of an exhumed thrust-sheet-top basin: an example from the south Pyrenean thrust belt
Auteur(s) : Labaume, Pierre Meresse, Florian Jolivet, Marc Teixell, Antonio Lahfid, Abdeltif
Auteurs secondaires : Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS) TOTAL-Scientific and Technical Center Jean Féger (CSTJF) ; Total Géosciences Rennes (GR) ; Université de Rennes 1 (UR1) - Institut national des sciences de l'Univers (INSU - CNRS) - Observatoire des Sciences de l'Univers de Rennes (OSUR) - Centre National de la Recherche Scientifique (CNRS) Department of Geology ; Universitat Autònoma de Barcelona [Barcelona] (UAB) Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)
Partager

| Plus
Flocculation Potential of Estuarine Particles: The Importance of Environmental Factors and of the Spatial and Seasonal Variability of Suspended Particulate Matter
Auteur(s) : Verney, Romaric Lafite, Robert Brun-cottan, Jean-claude
Partager

1,000 A mu m). Flocculation processes were estimated using three parameters: flocculation efficiency, flocculation speed, and flocculation time. Results showed that the flocculation that occurred at the three stations was mainly influenced by the concentration of the suspended particulate matter: maximum floc size was observed for concentrations above 0.1 g l(-1) while no flocculation was observed for concentrations below 0.004 g l(-1). Diatom blooms strongly enhanced flocculation speed and, to a lesser extent, flocculation efficiency. During this period, the maximum flocculation speed of 6 A mu m min(-1) corresponded to a flocculation time of less than 20 min. Salinity did not appear to automatically enhance flocculation, which depended on the constituents of suspended sediments and on the content and concentration of organic matter. Examination of the variability of 2D fractal dimension during flocculation experiments revealed restructuring of flocs during aggregation. This was observed as a rapid decrease in the floc fractal dimension from 2 to 1.4 during the first minutes of the flocculation stage, followed by a slight increase up to 1.8. Deflocculation experiments enabled determination of the influence of turbulent structures on flocculation processes and confirmed that turbulent intensity is one of the main determining factors of maximum floc size."> 1,000 A mu m). Flocculation processes were estimated using three parameters: flocculation efficiency, flocculation speed, and flocculation time. Results showed that the flocculation that occurred at the three stations was mainly influenced by the concentration of the suspended particulate matter: maximum floc size was observed for concentrations above 0.1 g l(-1) while no flocculation was observed for concentrations below 0.004 g l(-1). Diatom blooms strongly enhanced flocculation speed and, to a lesser extent, flocculation efficiency. During this period, the maximum flocculation speed of 6 A mu m min(-1) corresponded to a flocculation time of less than 20 min. Salinity did not appear to automatically enhance flocculation, which depended on the constituents of suspended sediments and on the content and concentration of organic matter. Examination of the variability of 2D fractal dimension during flocculation experiments revealed restructuring of flocs during aggregation. This was observed as a rapid decrease in the floc fractal dimension from 2 to 1.4 during the first minutes of the flocculation stage, followed by a slight increase up to 1.8. Deflocculation experiments enabled determination of the influence of turbulent structures on flocculation processes and confirmed that turbulent intensity is one of the main determining factors of maximum floc size."> 1,000 A mu m). Flocculation processes were estimated using three parameters: flocculation efficiency, flocculation speed, and flocculation time. Results showed that the flocculation that occurred at the three stations was mainly influenced by the concentration of the suspended particulate matter: maximum floc size was observed for concentrations above 0.1 g l(-1) while no flocculation was observed for concentrations below 0.004 g l(-1). Diatom blooms strongly enhanced flocculation speed and, to a lesser extent, flocculation efficiency. During this period, the maximum flocculation speed of 6 A mu m min(-1) corresponded to a flocculation time of less than 20 min. Salinity did not appear to automatically enhance flocculation, which depended on the constituents of suspended sediments and on the content and concentration of organic matter. Examination of the variability of 2D fractal dimension during flocculation experiments revealed restructuring of flocs during aggregation. This was observed as a rapid decrease in the floc fractal dimension from 2 to 1.4 during the first minutes of the flocculation stage, followed by a slight increase up to 1.8. Deflocculation experiments enabled determination of the influence of turbulent structures on flocculation processes and confirmed that turbulent intensity is one of the main determining factors of maximum floc size."> 1,000 A mu m). Flocculation processes were estimated using three parameters: flocculation efficiency, flocculation speed, and flocculation time. Results showed that the flocculation that occurred at the three stations was mainly influenced by the concentration of the suspended particulate matter: maximum floc size was observed for concentrations above 0.1 g l(-1) while no flocculation was observed for concentrations below 0.004 g l(-1). Diatom blooms strongly enhanced flocculation speed and, to a lesser extent, flocculation efficiency. During this period, the maximum flocculation speed of 6 A mu m min(-1) corresponded to a flocculation time of less than 20 min. Salinity did not appear to automatically enhance flocculation, which depended on the constituents of suspended sediments and on the content and concentration of organic matter. Examination of the variability of 2D fractal dimension during flocculation experiments revealed restructuring of flocs during aggregation. This was observed as a rapid decrease in the floc fractal dimension from 2 to 1.4 during the first minutes of the flocculation stage, followed by a slight increase up to 1.8. Deflocculation experiments enabled determination of the influence of turbulent structures on flocculation processes and confirmed that turbulent intensity is one of the main determining factors of maximum floc size."> | 1,000 A mu m). Flocculation processes were estimated using three parameters: flocculation efficiency, flocculation speed, and flocculation time. Results showed that the flocculation that occurred at the three stations was mainly influenced by the concentration of the suspended particulate matter: maximum floc size was observed for concentrations above 0.1 g l(-1) while no flocculation was observed for concentrations below 0.004 g l(-1). Diatom blooms strongly enhanced flocculation speed and, to a lesser extent, flocculation efficiency. During this period, the maximum flocculation speed of 6 A mu m min(-1) corresponded to a flocculation time of less than 20 min. Salinity did not appear to automatically enhance flocculation, which depended on the constituents of suspended sediments and on the content and concentration of organic matter. Examination of the variability of 2D fractal dimension during flocculation experiments revealed restructuring of flocs during aggregation. This was observed as a rapid decrease in the floc fractal dimension from 2 to 1.4 during the first minutes of the flocculation stage, followed by a slight increase up to 1.8. Deflocculation experiments enabled determination of the influence of turbulent structures on flocculation processes and confirmed that turbulent intensity is one of the main determining factors of maximum floc size.">Plus
Late Quaternary deep-sea sedimentation in the western Black Sea: New insights from recent coring and seismic data in the deep basin
Auteur(s) : Lericolais, Gilles Bourget, Julien Popescu, Irina Jermannaud, Paul Mulder, T. Jorry, Stephan Panin, N.
Partager

| Plus
Dynamique de mise en place des réseaux d'intrusions sableuses dans les bassins sédimentaires: Impact sur l'évolution post-dépôt des réservoirs et le réseau de migration associé
Auteur(s) : MONNIER, Damien
Auteurs secondaires : Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS) Université Montpellier 2 Aurélien Gay; Patrice Imbert
Partager

| Plus