8 documents satisfont la requête. Vérifiez les termes recherchés ou relancez la recherche sur le texte intégral
Cycle du mercure en estuaire, baie de Seine et pays de Caux
Auteur(s) : Laurier, Fabien
Partager

| Plus
Phosphorus forms related to sediment grain size and geochemical characteristics in French coastal areas
Auteur(s) : Andrieux-loyer, Françoise Aminot, Alain
Partager

| Plus
Flocculation Potential of Estuarine Particles: The Importance of Environmental Factors and of the Spatial and Seasonal Variability of Suspended Particulate Matter
Auteur(s) : Verney, Romaric Lafite, Robert Brun-cottan, Jean-claude
Partager

1,000 A mu m). Flocculation processes were estimated using three parameters: flocculation efficiency, flocculation speed, and flocculation time. Results showed that the flocculation that occurred at the three stations was mainly influenced by the concentration of the suspended particulate matter: maximum floc size was observed for concentrations above 0.1 g l(-1) while no flocculation was observed for concentrations below 0.004 g l(-1). Diatom blooms strongly enhanced flocculation speed and, to a lesser extent, flocculation efficiency. During this period, the maximum flocculation speed of 6 A mu m min(-1) corresponded to a flocculation time of less than 20 min. Salinity did not appear to automatically enhance flocculation, which depended on the constituents of suspended sediments and on the content and concentration of organic matter. Examination of the variability of 2D fractal dimension during flocculation experiments revealed restructuring of flocs during aggregation. This was observed as a rapid decrease in the floc fractal dimension from 2 to 1.4 during the first minutes of the flocculation stage, followed by a slight increase up to 1.8. Deflocculation experiments enabled determination of the influence of turbulent structures on flocculation processes and confirmed that turbulent intensity is one of the main determining factors of maximum floc size."> 1,000 A mu m). Flocculation processes were estimated using three parameters: flocculation efficiency, flocculation speed, and flocculation time. Results showed that the flocculation that occurred at the three stations was mainly influenced by the concentration of the suspended particulate matter: maximum floc size was observed for concentrations above 0.1 g l(-1) while no flocculation was observed for concentrations below 0.004 g l(-1). Diatom blooms strongly enhanced flocculation speed and, to a lesser extent, flocculation efficiency. During this period, the maximum flocculation speed of 6 A mu m min(-1) corresponded to a flocculation time of less than 20 min. Salinity did not appear to automatically enhance flocculation, which depended on the constituents of suspended sediments and on the content and concentration of organic matter. Examination of the variability of 2D fractal dimension during flocculation experiments revealed restructuring of flocs during aggregation. This was observed as a rapid decrease in the floc fractal dimension from 2 to 1.4 during the first minutes of the flocculation stage, followed by a slight increase up to 1.8. Deflocculation experiments enabled determination of the influence of turbulent structures on flocculation processes and confirmed that turbulent intensity is one of the main determining factors of maximum floc size."> 1,000 A mu m). Flocculation processes were estimated using three parameters: flocculation efficiency, flocculation speed, and flocculation time. Results showed that the flocculation that occurred at the three stations was mainly influenced by the concentration of the suspended particulate matter: maximum floc size was observed for concentrations above 0.1 g l(-1) while no flocculation was observed for concentrations below 0.004 g l(-1). Diatom blooms strongly enhanced flocculation speed and, to a lesser extent, flocculation efficiency. During this period, the maximum flocculation speed of 6 A mu m min(-1) corresponded to a flocculation time of less than 20 min. Salinity did not appear to automatically enhance flocculation, which depended on the constituents of suspended sediments and on the content and concentration of organic matter. Examination of the variability of 2D fractal dimension during flocculation experiments revealed restructuring of flocs during aggregation. This was observed as a rapid decrease in the floc fractal dimension from 2 to 1.4 during the first minutes of the flocculation stage, followed by a slight increase up to 1.8. Deflocculation experiments enabled determination of the influence of turbulent structures on flocculation processes and confirmed that turbulent intensity is one of the main determining factors of maximum floc size."> 1,000 A mu m). Flocculation processes were estimated using three parameters: flocculation efficiency, flocculation speed, and flocculation time. Results showed that the flocculation that occurred at the three stations was mainly influenced by the concentration of the suspended particulate matter: maximum floc size was observed for concentrations above 0.1 g l(-1) while no flocculation was observed for concentrations below 0.004 g l(-1). Diatom blooms strongly enhanced flocculation speed and, to a lesser extent, flocculation efficiency. During this period, the maximum flocculation speed of 6 A mu m min(-1) corresponded to a flocculation time of less than 20 min. Salinity did not appear to automatically enhance flocculation, which depended on the constituents of suspended sediments and on the content and concentration of organic matter. Examination of the variability of 2D fractal dimension during flocculation experiments revealed restructuring of flocs during aggregation. This was observed as a rapid decrease in the floc fractal dimension from 2 to 1.4 during the first minutes of the flocculation stage, followed by a slight increase up to 1.8. Deflocculation experiments enabled determination of the influence of turbulent structures on flocculation processes and confirmed that turbulent intensity is one of the main determining factors of maximum floc size."> | 1,000 A mu m). Flocculation processes were estimated using three parameters: flocculation efficiency, flocculation speed, and flocculation time. Results showed that the flocculation that occurred at the three stations was mainly influenced by the concentration of the suspended particulate matter: maximum floc size was observed for concentrations above 0.1 g l(-1) while no flocculation was observed for concentrations below 0.004 g l(-1). Diatom blooms strongly enhanced flocculation speed and, to a lesser extent, flocculation efficiency. During this period, the maximum flocculation speed of 6 A mu m min(-1) corresponded to a flocculation time of less than 20 min. Salinity did not appear to automatically enhance flocculation, which depended on the constituents of suspended sediments and on the content and concentration of organic matter. Examination of the variability of 2D fractal dimension during flocculation experiments revealed restructuring of flocs during aggregation. This was observed as a rapid decrease in the floc fractal dimension from 2 to 1.4 during the first minutes of the flocculation stage, followed by a slight increase up to 1.8. Deflocculation experiments enabled determination of the influence of turbulent structures on flocculation processes and confirmed that turbulent intensity is one of the main determining factors of maximum floc size.">Plus
Effect of nursery habitat degradation on flatfish population: Application to Solea solea in the Eastern Channel (Western Europe)
Auteur(s) : Rochette, S. Rivot, Etienne Morin, Jocelyne Mackinson, S. Riou, Philippe Le Pape, Olivier
Partager

| Plus
Contamination chimique du milieu marin : de la mesure à l'évaluation des risques
Auteur(s) : Abarnou, Alain
Partager

| Plus
Environmental and subtidal fish assemblage relationships in two different Brazilian coastal estuaries
Auteur(s) : Vendel Ana, Lucia Bouchereau, Jean-Luc De Tarso Chaves, Paulo
Auteurs secondaires : Centro de Ciencias Biologicas et Sociais Aplicadas ; Universidade Estadual da Paraiba Systématique, adaptation, évolution (SAE) ; Université Pierre et Marie Curie - Paris 6 (UPMC) - Centre National de la Recherche Scientifique (CNRS) Departamento de Zoologia ; Universidade Federal do Paraná (UFPR)
Partager

| Plus
Role of particle sorption properties in the behavior and speciation of trace metals in macrotidal estuaries: The cadmium example
Auteur(s) : Gonzalez, Jean-louis Thouvenin, Benedicte Dange, Catherine Chiffoleau, Jean-francois Boutier, Bernard
Partager

| Plus
Rapport sur l'exercice de la pêche dans la zone côtière de la France
Auteur(s) : Bolopion, Jacques Forest, Andre Sourd, Louis-julien Bolopion, Jacques Forest, Andre Sourd, Louis-julien
Partager

| Plus